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REINVENTING DISCOVERY



CHAPTER 1



Reinventing Discovery

Tim Gowers i1s not your typical blogger. A mathematician at
Cambridge University, Gowers 1s a recipient of the highest honor in
mathematics, the Fields Medal, often called the Nobel Prize of
mathematics. His blog radiates mathematical ideas and insight.

In January 2009, Gowers decided to use his blog to run a very unusual
social experiment. He picked out an important and difficult unsolved
mathematical problem, a problem he said he’d “love to solve.” But
instead of attacking the problem on his own, or with a few close
colleagues, he decided to attack the problem completely in the open,
using his blog to post ideas and partial progress. What’s more, he issued
an open invitation asking other people to help out. Anyone could follow
along and, if they had an idea, explain it in the comments section of the
blog. Gowers hoped that many minds would be more powerful than one,
that they would stimulate each other with different expertise and
perspectives, and collectively make easy work of his hard mathematical
problem. He dubbed the experiment the Polymath Project.

The Polymath Project got off to a slow start. Seven hours after Gowers
opened up his blog for mathematical discussion, not a single person had
commented. Then a mathematician named Jozsef Solymosi from the
University of British Columbia posted a comment suggesting a variation
on Gowers’s problem, a variation which was easier, but which Solymosi
thought might throw light on the original problem. Fifteen minutes later,
an Arizona high-school teacher named Jason Dyer chimed in with a
thought of his own. And just three minutes after that, UCLA
mathematician Terence Tao—Ilike Gowers, a Fields medalist—added a
comment. The comments erupted: over the next 37 days, 27 people
wrote 800 mathematical comments, containing more than 170,000
words. Reading through the comments you see ideas proposed, refined,
and discarded, all with incredible speed. You see top mathematicians
making mistakes, going down wrong paths, getting their hands dirty
following up the most mundane of details, relentlessly pursuing a



solution. And through all the false starts and wrong turns, you see a
gradual dawning of insight. Gowers described the Polymath process as
being “to normal research as driving is to pushing a car.” Just 37 days
after the project began Gowers announced that he was confident the
polymaths had solved not just his original problem, but a harder problem
that included the original as a special case. He described it as “one of the
most exciting six weeks of my mathematical life.” Months’ more
cleanup work remained to be done, but the core mathematical problem
had been solved. (If you’d like to know the details of Gowers’s problem,
they’re described in the appendix. If you just want to get on with reading
this book, you can safely skip those details.)

The polymaths aren’t standing still. Since Gowers’s original project,
nearly a dozen Polymath and Polymath-like projects have been launched,
some attacking problems even more ambitious than Gowers’s original
problem. More than 100 mathematicians and other scientists have
participated; mass collaboration 1s starting to spread through
mathematics. Like the first Polymath Project, several of these projects
have been great successes, really driving our understanding of
mathematics forward. Others have been more qualified successes, falling
short of achieving their (sometimes extremely ambitious) goals.
Regardless, massively collaborative mathematics is a powerful new way
of attacking hard mathematical problems.

Why is mass online collaboration useful in solving mathematical
problems? Part of the answer is that even the best mathematicians can
learn a great deal from people with complementary knowledge, and be
stimulated to consider ideas in directions they wouldn’t have considered
on their own. Online tools create a shared space where this can happen, a
short-term collective working memory where ideas can be rapidly
improved by many minds. These tools enable us to scale up creative
conversation, so connections that would ordinarily require fortuitous
serendipity instead happen as a matter of course. This speeds up the
problem-solving process, and expands the range of problems that can be
solved by the human mind.

The Polymath Project is a small part of a much bigger story, a story
about how online tools are transforming the way scientists make
discoveries. These tools are cognitive tools, actively amplifying our
collective intelligence, making us smarter and so better able to solve the
toughest scientific problems. To understand why all this matters, think
back to the seventeenth century and the early days of modern science,
the time of great discoveries such as Galileo’s observation of the moons



of Jupiter, and Newton’s formulation of his laws of gravitation. The
greatest legacy of Galileo, Newton, and their contemporaries wasn’t
those one-off breakthroughs. It was the method of scientific discovery
itself, a way of understanding how nature works. At the beginning of the
seventeenth century extraordinary genius was required to make even the
tiniest of scientific advances. By developing the method of scientific
discovery, early scientists ensured that by the end of the seventeenth
century such scientific advances were run-of-the-mill, the likely outcome
of any competent scientific investigation. What previously required
genius became routine, and science exploded.

Such improvements to the way discoveries are made are more
important than any single discovery. They extend the reach of the human
mind into new realms of nature. Today, online tools offer us a fresh
opportunity to improve the way discoveries are made, an opportunity on
a scale not seen since the early days of modern science. I believe that the
process of science—how discoveries are made—will change more in the
next twenty years than it has in the past 300 years.

The Polymath Project illustrates just a single aspect of this change, a
shift in how scientists work together to create knowledge. A second
aspect of this change is a dramatic expansion in scientists’ ability to find
meaning in knowledge. Consider, for example, the studies you often see
reported in the news saying ‘“so-and-so genes cause such-and-such a
disease.” What makes these studies possible is a genetic map of human
beings that’s been assembled over the past twenty years. The best-known
part of that map is the human genome, which scientists completed in
2003. Less well known, but perhaps even more important, is the HapMap
(short for haplotype map), completed in 2007, which charts how and
where different human beings can differ in their genetic code. Those
genetic variations determine much about our different susceptibilities to
disease, and the HapMap says where those variations can occur—it’s a
genetic map not just of a single human being, but of the entire human
race.

This human genetic map was the combined work of many, many
biologists around the world. Each time they obtained a new chunk of
genetic data in their laboratories, they uploaded that data to centralized
online services such as GenBank, the amazing online repositoryf genetic
information run by the US National Center for Biotechnology
Information. GenBank integrates all this genetic information into a
single, publicly accessible online database, a compilation of the work of
thousands of biologists. It’s information on a scale that’s almost



impossible to analyze by hand. Fortunately, anyone in the world may
freely download the genetic map, and then use computer algorithms to
analyze the map, perhaps discovering previously unsuspected facts about
the human genome. You can, if you like, go to the GenBank site right
now, and start browsing genetic information. (For links to GenBank and
other resources, see the “Notes on Sources,” starting on page 347.) This
is, in fact, what makes those studies linking genes to disease possible: the
scientists doing the studies start by finding a large group of people with
the disease, and also a control group of people without the disease. They
then use the human genetic map to find correlations between disease
incidence and the genetic differences of the two groups.

A similar pattern of discovery is being used across science. Scientists
in many fields are collaborating online to create enormous databases that
map out the structure of the universe, the world’s climate, the world’s
oceans, human languages, and even all the species of life. By integrating
the work of hundreds or thousands of scientists, we are collectively
mapping out the entire world. With these integrated maps anyone can use
computer algorithms to discover connections that were never before
suspected. Later in the book we’ll see examples ranging from new ways
of tracking influenza outbreaks to the discovery of orbiting pairs of
supermassive black holes. We are, piece by piece, assembling all the
world’s knowledge into a single giant edifice. That edifice is too vast to
be comprehended by any individual working alone. But new
computerized tools can help us find meaning hidden in all that
knowledge.

If the Polymath Project illustrates a shift in how scientists collaborate
to create knowledge, and GenBank and the genetic studies illustrate a
shift in how scientists find meaning in knowledge, a third big shift is a
change in the relationship between science and society. An example of
this shift is the website Galaxy Zoo, which has recruited more than
200,000 online volunteers to help astronomers classify galaxy images.
Those volunteers are shown photographs of galaxies, and asked to
answer questions such as “Is this a spiral or an elliptical galaxy?” and “If
this is a spiral, do the arms rotate clockwise or anticlockwise?” These are
photographs that have been taken automatically by a robotic telescope,
and have never before been seen by any human eye. You can think of
Galaxy Zoo as a cosmological census, the largest ever undertaken, a
census that has so far produced more than 150 million galaxy
classifications.



The volunteer astronomers who participate in Galaxy Zoo are making
astonishing discoveries. They have, for example, recently discovered an
entirely new class of galaxy, the ‘“green pea galaxies”—so named
because the galaxies do, indeed, look like small green peas—where stars
are forming faster than almost anywhere else in the universe. They’ve
also discovered what is believed to be the first ever example of a quasar
mirror, an enormous cloud of gas tens of thousands of light-years in
diameter, which is glowing brightly as the gas is heated by light from a
nearby quasar. In just three years, the work of the Galaxy Zoo volunteers
has resulted in 22 scientific papers, and many more are in the works.

Galaxy Zoo i1s just one of many online citizen science projects that
are recruiting volunteers, most of them without scientific training, to help
solve scientific research problems. We’ll see examples ranging across
science, from volunteers who are using computer games to predict the
shape of protein molecules, to volunteers who are helping understand
how dinosaurs evolved. These are serious scientific projects, projects
where large groups of volunteers with little scientific training can attack
scientific problems beyond the reach of small groups of professionals.
There’s no way a team of professionals could do what Galaxy Zoo does
—even working full time, the pros don’t have the time to classify
hundreds of thousands (or more) of galaxies. You might suppose they’d
use computers to classify the galaxy images, but in fact the human
volunteers classify the galaxies more accurately than even the best
computer programs. So the volunteers at projects such as Galaxy Zoo are
expanding the boundary of what scientific problems can be solved, and
in so doing, changing both who can be a scientist and what it means to be
a scientist. How far can the boundary between professional and amateur
scientist be blurred? Will we one day see Nobel Prizes won by huge
collaborations dominated by amateurs?

Citizen science i1s part of a larger shift in the relationship between
science and society. Galaxy Zoo and similar projects are examples of
institutions that are bridging the scientific community and the rest of
society in new ways. We’ll see that online tools enable many other new
bridging institutions, including open access publishing, which gives the
public direct access to the results of science, and science blogging, which
is helping create a more open and more transparent scientific community.
What other new ways can we find to build bridges between science and
the rest of society? And what will be the long-run impact of these new
bridging institutions?



The story so far is an optimistic story of possibility, of new tools that
are changing the world. But there’s a problem with this story, some
major obstacles that prevent scientists from taking full advantage of
online tools. To understand the obstacles, consider the studies linking
genes to disease that we discussed earlier. There’s a crucial part of that
story which I glossed over, but which is actually quite puzzling: why is it
that biologists share genetic data in GenBank in the first place? When
you think about it, it’s a peculiar choice: if you’re a professional
biologist it’s to your advantage to keep data secret as long as possible.
Why share your data online before you get a chance to publish a paper or
take out a patent on your work? In the scientific world it’s papers and, in
some fields, patents that are rewarded by jobs and promotions. Publicly
releasing data typically does nothing for your career, and might even
damage it, by helping your scientific competitors.

In part for these reasons, GenBank took off slowly after it was
launched in 1982. While many biologists were happy to access others’
data in GenBank, they had little interest in contributing their own data.
But that has changed over time. Part of the reason for the change was a
historic conference held in Bermuda in 1996, and attended by many of
the world’s leading biologists, including several of the leaders of the
government-sponsored Human Genome Project. Also present was Craig
Venter, who would later lead a private effort to sequence the human
genome. Although many attendees weren’t willing to unilaterally make
the first move to share all their genetic data in advance f publication,
everyone could see that science as a whole would benefit enormously 1f
open sharing of data became common practice. So they sat and talked the
issue over for days, eventually coming to a joint agreement—now known
as the Bermuda Agreement—that all human genetic data should be
immediately shared online. The agreement wasn’t just empty rhetoric.
The biologists in the room had enough clout that they convinced several
major scientific grant agencies to make immediate data sharing a
mandatory requirement of working on the human genome. Scientists
who refused to share data would get no grant money to do research. This
changed the game, and immediate sharing of human genetic data became
the norm. The Bermuda agreement eventually made its way to the
highest levels of government: on March 14, 2000, US President Bill
Clinton and UK Prime Minister Tony Blair issued a joint statement
praising the principles described in the Bermuda Agreement, and urging
scientists in every country to adopt similar principles. It’s because of the



Bermuda Agreement and similar subsequent agreements that the human
genome and the HapMap are publicly available.

This 1s a happy story, but it has an unhappy coda. The Bermuda
Agreement originally only applied to human genetic data. There have
since been many attempts to extend the spirit of the agreement, so that
more genetic data is shared. But despite these attempts, there are still
many forms of life for which genetic data remains secret. For example,
as of 2010 there is no worldwide agreement to share data about the
influenza virus. Steps toward such an agreement remain bogged down in
wrangling among the leading parties. To give you the flavor of how
many scientists think about sharing non-human genetic data, one
scientist recently told me that he’d been “sitting on a genome” for an
entire species (!) for more than a year. Without any incentive to share,
and with many reasons not to, scientists hoard their data. As a result,
there’s an emerging data divide between our understanding of life-forms
such as human beings, where nearly all genetic data are available online,
and life-forms such as influenza, where important data remain locked up.

This story makes it sound as though the scientists involved are greedy
and destructive. After all, this research is typically paid for using public
funds. Shouldn’t scientists make their results available as soon as
possible? There’s truth to these ideas, but the situation is complex. To
understand what’s going on, you need to understand the incredible
competitive pressures on ambitious young scientists. On the rare
occasion a good long-term job at a major university opens up, there are
often hundreds of superbly-qualified applicants. Competition for jobs is
so fierce that eighty-hour-plus workweeks are common among young
scientists. As much of that time as possible is spent working on the one
thing that will get such a job: amassing an impressive record of scientific
papers. Those papers will bring in the research grants and letters of
recommendation necessary to find long-term employment. The pace
relaxes after tenure, but continued grant support still requires a strong
work ethic. The result is that while many scientists agree in principle that
they’d love to share their data in advance of publication, they worry that
doing so will give their competitors an unfair advantage. Those
competitors could exploit that knowledge to rush their results into print
first, or, worse, even steal the data outright and present the results as
their own. It’s only practical to share data if everyone is protected by a
collective agreement such as the Bermuda agreement.

A similar pattern has seen scientists resist contributing to many other
online projects. Consider Wikipedia, the online encyclopedia. Wikipedia



has a vision statement to warm a scientist’s heart: “Imagine a world in
which every single human being can freely share in the sum of all
knowledge. Thats our commitment.” You might think Wikipedia was
started by scientists eager to share all the world’s knowledge, but you’d
be wrong. In fact, it was started by Jimmy “Jimbo” Wales, who at the
time was cofounder of an online company mostly specializing in adult
content, and Larry Sanger, a philosopher who left academia to work with
Wales on online encyclopedias. In the early days of Wikipedia there was
little involvement from scientists. This was despite the fact that anyone
in the world can edit Wikipedia, and, in fact, it’s written entirely by its
users. So here’s this incredibly exciting project, which anyone can get
involved in, which is taking off rapidly, and which expresses core
scientific values. Why weren’t scientists lining up to be involved? The
problem is the same as with the genetic data: why would scientists take
the time to contribute to Wikipedia when they could be doing something
more respectable among their peers, like writing a paper? That’s the kind
of activity that leads to jobs, grants, and promotions. It doesn’t matter
that contributing to Wikipedia might be more intrinsically valuable. In
the early days work on Wikipedia was seen by scientists as frivolous, a
waste of time, as not being serious science. I’'m happy to say that this has
changed over the years, and today Wikipedia’s success has to some
extent legitimized work on it by scientists. But isn’t it strange that the
modern-day Library of Alexandria came from outside academia?

There’s a puzzle here. Scientists helped create the internet and the
world wide web. They’ve taken enthusiastically to online tools such as
email, and pioneered striking projects such as the Polymath Project and
Galaxy Zoo. Why is it that they’ve only reluctantly adopted tools such as
GenBank and Wikipedia? The reason is that, despite their radical
appearance, the Polymath Project, Galaxy Zoo, and similar undertakings
have an inherent underlying conservatism: they’re ultimately projects in
service of the conventional goal of writing scientific papers. That
conservatism helps them attract contributors who are willing to use
unconventional means such as blogs to more effectively achieve a
conventional end (writing a scientific paper). But when the goal isn’t
simply to produce a scientific paper—as with GenBank, Wikipedia, and
many other tools—there’s no direct motivation for scientists to
contribute. And that’s a problem, because some of the best ideas for
improving the way scientists work involve a break away from the
scientific paper as the ultimate goal of scientific research. There are
opportunities being missed that dwarf GenBank and Wikipedia in their



potential impact. In this book, we’ll delve into the history and culture of
science, and see how this situation arose, in which scientists are often
reluctant to share their ideas and data in ways that speed up the
advancement of science. The good news is that we’ll find leverage points
where small changes today will lead to a future where scientists do take
full advantage of online tools, greatly increasing our capacity for
scientific discovery.

Revolutions are sometimes marked by a single, spectacular event: the
storming of the Bastille during the French Revolution, or the signing of
the US Declaration of Independence. But often the most important
revolutions aren’t announced with the blare of trumpets. They occur
quietly, too slowly to make the news but fast enough that if you aren’t
alert, the revolution is over before you’re aware it’s happening. The
change described in this book is like this. It’s not a single event, nor is it
a change that’s happening quickly. It’s a slow revolution that has quietly
been gathering steam for years. Indeed, it’s a change that many scientists
have missed or underestimated, being so focused on their own specialty
that they don’t appreciate just how broad-ranging the impact of the new
online tools is. They’re like surfers at the beach who are so intent on
watching the waves crash and recede that they’re missing the rise of the
tide. But you shouldn’t let the slow, quiet nature of the current changes in
how science is done fool you. We are in the midst of a great change in
how knowledge is constructed. Imagine you were alive in the
seventeenth century, at the dawn of modern science. Most people alive at
that time had no idea of the great transformation that was going on, a
transformation in how we know. Even if you were not a scientist,
wouldn’t you have wanted to at least be aware of the remarkable
transformation that was going on in how we understood the world? A
change of similar magnitude is going on today: we are reinventing
discovery.

I wrote this book because I believe the reinvention of discovery is one
of the great changes of our time. To historians looking back a hundred
years from now, there will be two eras of science: pre-network science,
and networked science. We are living in the time of transition to the
second era of science. But it’s going to be a bumpy transition, and there
1s a possibility it will fail or fall short of its potential. And so I also wrote
the book to help create a widely shared public understanding of the
opportunity now before us, an understanding that a more open approach
to science isn’t just a nice idea, but that it must be demanded of our
scientists and our scientific institutions.



This change is important. Improving the way science is done means
speeding up the rate of all scientific discovery. It means speeding up
things such as curing cancer, solving the climate-change problem,
launching humanity permanently into space. It means fundamental
insights into the human condition, into how the universe works and what
it is made of. It means discoveries we’ve not yet dreamt of. Over the next
few years we have an astonishing opportunity to change and improve the
way science is done. This book is the story of this change, what it means
for us, and what we need to do to make it happen.



PART 1

Amplifying Collective Intelligence



CHAPTER 2



Online Tools Make Us Smarter

In 1999, world chess champion Garry Kasparov played a game of
chess against “the World.” In this event, organized by Microsoft, the idea
was that anyone in the world could go to the game website, and vote on
what move should be taken next. On a typical move more than 5,000
people voted, and over the entire game 50,000 people from 75 countries
voted. The World Team decided on a new move every 24 hours, and on
any given turn the move taken was whichever got the most votes. The
game was billed as.” [Kasparov versus the World.”

The game exceeded all expectations. After 62 moves of innovative
chess, in which the balance of the game changed several times, the
World Team finally resigned. Kasparov called it “the greatest game in
the history of chess,” and revealed that during the game he often couldn’t
tell who was winning and who was losing; it wasn’t until the 51st move
that the balance swung decisively in his favor. After the game, Kasparov
wrote a book about it, and in that book he commented that he expended
more energy on this one game than on any other in his career, including
world championship games.

Although the World Team had input from some strong players, none
was as strong as Kasparov himself, and the average quality of player was
far below Kasparov. Yet collectively the World Team played a game far
stronger than any of the individuals contributing would ordinarily have
played—indeed, one of the strongest games in the history of chess. Not
only did they play Kasparov at his best, but much of their deliberation
about strategy and tactics was carried out in public, an advantage
Kasparov used extensively. Imagine not only playing Garry Kasparov,
but also having to explain to him the thinking behind your moves!

How was this possible? How could thousands of chess players, most
of them amateurs, compete in a chess game with Kasparov at his peak?
The World Team contained people at all levels of chess ability, from
beginners to grandmasters. Moves regarded by experts as obviously
mistaken sometimes obtained up to 10 percent of the vote, suggesting



that many beginners were participating. On one move, 2.4 percent of the
votes were cast for moves that weren’t merely bad, but actually violated
the rules of chess!

The World Team coordinated their play in several ways. Microsoft set
up a game forum where people could discuss the game, and also
appointed four official advisors to the World Team. These were
outstanding teenage chess players, among the best of their age in the
world, although none were in Kasparov’s class. On each move, the
advisors published their recommendations on the Microsoft website, and,
if they wanted, a commentary explaining the recommendation. This was
done well before World Team voting closed, so the recommendations
could influence the voting. As the game progressed several other strong
chess players also offered advice. Particularly influential, although not
always heeded, was the GM School, a Russian chess club containing
several grandmasters.

Most of the advisors and other strong players ignored the discussion
on the game forum, making no attempt to engage with the bulk of people
making up the World Team, and so distancing themselves from the
people whose votes decided the World Team’s moves. But one of the
advisors did actively engage with the World Team. This was an
extraordinary young chess player named Irina Krush. Fifteen years old,
Krush had recently become the US Women’s chess champion. Although
not as highly rated as two of the other World Team advisors, Krush was
certainly in the international elite of junior chess players.

Unlike her expert peers, Krush devoted considerable time and
attention to the World Team’s game forum. Shrugging off abuse and
insults, she extracted many of the best ideas and analyses from the
forum, wrote extensive commentary describing the thinking behind her
recommnded moves, and gradually built up a network of strong chess-
playing correspondents, including some of the grandmasters offering
advice.

Simultaneously, Krush and her management team, a company named
Smart Chess, built a publicly accessible analysis tree for the game,
showing possible moves and countermoves, and containing the best
arguments for and against different lines of play. These arguments were
drawn not only from her own analysis, but also from the game forum and
from her correspondence with others, including the GM School. This
analysis tree helped the World Team coordinate their efforts, prevented
duplication of effort, and served as a reference point for the World Team
during discussion and voting.



As the game went on, Krush’s role on the World Team became pivotal.
Part of the reason was the quality of her play. On move 10, Krush
suggested a move that Kasparov called “a great move, an important
contribution to chess,” blowing the game wide open, and taking it into
uncharted chess territory. This move raised her standing with the World
Team, and helped her assume a coordinating role. Between moves 10
and 50 Krush’s recommended move was always played by the World
Team, even when it disagreed with the recommendations of the other
three advisors to the World Team, or with influential commentators such
as the GM School.

As a result, some people say the game was really Kasparov versus
Krush, despite the fact that Kasparov would ordinarily have beaten
Krush easily. Kasparov himself has said he believed he was really
playing against Smart Chess, Krush’s management team. Krush has
dismissed both points of view. In a series of essays written after the game
she explained the thinking behind her recommended moves, and how she
drew on ideas from a multitude of sources, ranging from anonymous
posters on the game forum to grandmasters. She repeatedly explains how
she changed and in some cases abandoned her own ideas, convinced by
someone else’s superior analysis. Thus, Krush was neither playing alone
nor as part of a small team, but rather was at the center of the
coordination effort for the entire World Team. As a result she had the
best understanding of all the suggestions being made by members of the
World Team. Other, stronger players didn’t understand the different
points of view as well, and so didn’t make as good decisions about what
move to make next, nor did they have the standing with the World Team
to influence the voting as strongly as Krush. Krush’s coordinating role
thus brought the best ideas of all contributors into a coherent whole. The
result was that the World Team emerged far stronger than any individual
player on the team, and arguably stronger than any player in history
except Kasparov at his peak.

Kasparov versus the World was not the first game to pit a chess
grandmaster against the World. Three years earlier, in 1996, former
world chess champion Anatoly Karpov also played such a game.
“Karpov Against the World” used a different online system to decide
moves, with no game forum or official game advisors, and giving World
Team members just ten minutes to vote on their preferred move. Without
the means to coordinate their actions, the World Team played poorly, and
Karpov crushed them in just 32 moves. Perhaps influenced by Karpov’s
success, Kasparov admitted that before his game he “was not



anticipating any particular difficulties,” and was confident that he
“would be able to finish matters in under 40 moves.” How surprised he
must have been.

Amplifying Collective Intelligence

Examples such as Kasparov versus the World and the Polymath
Project show that groups can use online tools to make themselves
collectively smarter. That is, those tools can be used to amplify our
collective intelligence, in much the way that manual tools have been
used for millennia to amplify our physical strength. How do these new
tools achieve this amazing feat? Is it just a fluke? Or can online tools be
used more generally to solve creative problems that defeat the ingenuity
of even the cleverest individuals? Are there general design principles that
can be used to amplify collective intelligence, a sort of design science of
collaboration?

A common approach to these questions is to suggest that online tools
enable some sort of collective brain, with the people in the group playing
the role of neurons. A greater intelligence then somehow emerges from
the connections between these human neurons. While this metaphor is
stimulating, it has many problems. The brain’s origin and hardware are
completely different from those of the internet, and there’s no
compelling reason to suppose the brain is an accurate model of how
collective intelligence works, or of how it can best be amplified.
Whatever our collective brain is doing, it seems likely to work according
to very different principles than the brain inside our heads. Furthermore,
we don’t yet have a good understanding of how the human brain works,
so the metaphor is in any case of limited use at best. If we’re going to
understand how to amplify collective intelligence, we need to look
beyond the metaphor of the collective brain.

Many books and magazine articles have been written about collective
intelligence. Perhaps the best-known example of this work is James
Surowiecki’s 2004 book The Wisdom of Crowds, which explains how
large groups of people can sometimes perform surprisingly well at
problem solving. Surowiecki opens his book with a striking story about
the scientist Francis Galton. In 1906, Galton was attending an English



country fair, and among the fair’s attractions was a weight-judging
contest, where people competed to guess the weight of an ox. Galton
expected that most of the competitors would be far off in their estimates,
and was surprised to learn that the average of all the competitors’
guesses (1,197 pounds) was just one pound short of the correct weight of
1,198 pounds. In other words, collectively, if one averaged the guesses,
the crowd at the fair guessed the weight almost perfectly. Surowiecki’s
book goes on to discuss many other ways we can combine our collective
wisdom to surprisingly good effect.

This book goes beyond The Wisdom of Crowds and similar works in
two ways. First, our goal is to understand how online tools can actively
amplify collective intelligence. That is, we’re not just interested in
collective intelligence, per se, but in how to design tools that
dramatically increase collective intelligence. Second, we’re not just
discussing everyday problems like estimating the weight of an ox.
Instead, our focus is on problems at the limit of human problem-solving
ability, problems like competing with Garry Kasparov at the peak of his
chess-playing might, or smashing mathematical problems that challenge
the world’s best mathematicians. Our main interest will be in scientific
problem-solving, and of course it’s problems at the limit of human
problem-solving ability that scientists most dearly want to solve, and
whose solution will bring the greatestnefit.

Superficially, the idea that online tools can make us collectively
smarter contradicts the idea, currently fashionable in some circles, that
the internet is reducing our intelligence. For example, in 2010 the author
Nicholas Carr published a book entitled The Shallows: What the Internet
Is Doing to Our Brains, arguing that the internet is reducing our ability
to concentrate and contemplate. Carr’s book and other similar works
make many good points, and have been widely discussed. But new
technologies seldom have just a single impact, and there’s no
contradiction in believing that online tools can both enhance and reduce
intelligence. You can use a hammer to build a house; you can also use it
to break your thumb. Complex technologies, especially, often require
considerable skill to use well. Automobiles are amazing tools, but we all
know how learner drivers can terrorize the road. Looking at the internet
and concluding that the main impact is to make us stupid is like looking
at the automobile and concluding that it’s a tool for learner drivers to
wipe out terrified pedestrians. Online, we’re all still learner drivers, and
it’s not surprising that online tools are sometimes used poorly,
amplifying our individual and collective stupidity. But as we’ve already



seen, there are also examples showing that online tools can be used to
increase our collective intelligence. Our concern will therefore be with
understanding how those tools can be used to make us collectively
smarter, and what that change will mean.

We’re still in the early days of understanding how to amplify
collective intelligence. It’s telling that many of the best tools we have—
tools such as blogs, wikis, and online forums—weren’t invented by the
people we might suppose are the experts on group behavior and
intelligence, experts from fields such as group psychology, sociology,
and economics. Instead, they were invented by amateurs, people such as
Matt Mullenweg, who was a 19-year-old student when he created
Wordpress, one of the most popular types of blogging software, and
Linus Torvalds, who was a 21-year-old student when he created the open
source Linux operating system. That tells us we should be wary of
current theory: while we can learn a great deal from existing academic
studies, the picture of collective intelligence that emerges is also
incomplete. For this reason, we’ll ground our discussion in concrete
examples in the mold of the Polymath Project and Kasparov versus the
World. In part 1 of this book we’ll use these concrete examples to distill
a set of principles that explain how online tools can amplify collective
intelligence.

I have deliberately focused the discussion in part 1 on a relatively
small number of examples, with the idea being that as we develop a
conceptual framework for understanding collective intelligence, we’ll
revisit each of these examples several times, and come to understand
them more deeply. Furthermore, the examples come not just from
science, but also from areas such as chess and computer programming.
The reason is that some of the most striking examples of amplifying
collective intelligence—examples such as Kasparov versus the World—
come from outside science, and we can learn a great deal by studying
them.

As our understanding deepens, we’ll see that scientific problems are
especially well suited for attack by collective intelligence, and in part 2
we’ll narrow our focus to how collective intellige is changing science.



CHAPTER 3



Restructuring Expert Attention

In 2003, a young woman named Nita Umashankar, from Tucson,
Arizona, went to live for a year in India, where she worked with a not-
for-profit organization to help sex workers escape the sex trade. What
she found in India frustrated her. Many of the sex workers had so few
skills that it was almost impossible to help them find jobs outside
prostitution. Returning to the United States, Umashankar decided she
would start a not-for-profit organization that addressed the core problem,
by training at-risk Indian girls in technology, and then helping them find
jobs with technology companies.

Eight years later, the nonprofit she founded, ASSET India, has opened
technology training centers in five Indian cities. They’ve helped
hundreds of young people escape the sex trade, and have plans to
expand. Unfortunately, many of the smaller towns they’d like to expand
into don’t have the reliable electricity needed to power -crucial
technologies such as the wireless routers used to access the internet.
ASSET has experimented with using solar-powered wireless routers, but
found that the devices already on the market won’t run reliably over the
long hours their training centers are open.

To solve their problem with wireless routers, ASSET tried something
unconventional, searching for help using an online marketplace for
scientific problems called InnoCentive. InnoCentive is like eBay or
Craigslist, but aimed at scientific problems. The idea is that participating
organizations can post online “Challenges”—scientific problems they
want solved—with prizes for solution, often tens of thousands of dollars.
Anyone in the world can download a detailed description of a Challenge,
try to solve the problem, and win the prize.

Using $20,000 in prize money put up by the Rockefeller Foundation,
ASSET posted an InnoCentive Challenge to design a reliable solar-
powered wireless router, using low-cost, easily available hardware and
software. In the two months the Challenge was posted at InnoCentive it
was downloaded 400 times, and 27 solutions were submitted. The



$20,000 prize was awarded to a 31-year-old Texan software engineer
named Zacary Brown, and a prototype is being built by engineering
students at the University of Arizona.

Zacary Brown wasn’t just any software engineer. An enthusiastic
amateur wireless radio operator, he was working toward a goal of
making radio contact with every country in the world. While growing up,
he was enchanted by his parents’ explanation of how the solar panels
Jimmy Carter installed at the White House made electricity from
sunlight, and as an adult he was experimenting with using solar panels to
power his wireless radio equipment. Over the long run, he hoped to
power his entire home office using solar power. In short, Zacary Brown
was exactly the right person for ASSET to be talking to. InnoCentive
simply provided a way of making the connection.

Underlying InnoCentive is the premise that there i1s enormous
untapped potential for scientific discovery in the world, potential that can
be released by connecting the right people. This premise has been
confirmed, with more than 160,000 people from 175 countries signing up
to InnoCentive, and prizes for more than 200 Challenges awarded. The
Challenges range across many areas of science and technology.
Examples include finding more cost-effective methods of manufacturing
drugs for tuberculosis, designing a solar-powered mosquito repellent
(’m not making this up!) to combat malaria, and finding better ways of
identifying people at risk of developing motor neuron disease. Many of
the successful solvers report, as Zacary Brown did, that the Challenges
they solve closely match their skills and interests. Furthermore, as in the
ASSET story, connections are usually made between parties who
otherwise would only have met accidentally. InnoCentive makes such
connections systematically, not as lucky one-offs, but at scale.

The reason the connections made by InnoCentive are so valuable is, of
course, the big gap between the skills of the people posing the
Challenges and those solving the Challenges. While designing a solar-
powered wireless router may take an expert such as Zacary Brown only a
few days, it would take months or years for the people at ASSET India.
They just don’t have the right expertise. It’s because Zacary Brown has
such an enormous comparative advantage that he and ASSET can work
together for mutual benefit. More generally, the attention of the right
expert at the right time is often the single most valuable resource one can
have in creative problem solving. Expert attention is to creative problem
solving what water is to life in the desert: it’s the fundamental scarce
resource. InnoCentive creates value by restructuring expert attention, so



that people such as Zacary Brown can use their expertise in high-
leverage ways: InnoCentive helped Zacary Brown focus his expertise on
ASSET’s problem, instead of working at home on his hobbies.

In this chapter we’ll see that it’s this ability to restructure expert
attention that is at the heart of how online tools amplify collective
intelligence. What examples such as InnoCentive, the Polymath Project,
and Kasparov versus the World share is the ability to bring the attention
of the right expert to the right problem at the right time. In the first half
of the chapter we’ll look in more detail at these examples, and develop a
broad conceptual framework that explains how they restructure expert
attention. In the second half of the chapter we’ll apply that framework to
understand how online collaborations can work together in ways that are
essentially different from offline collaborations.

Harnessing Latent Microexpertise

While the ASSET-InnoCentive story is striking, Kasparov versus the
World is an even more impressive example of collective intelligence. As
in the ASSET-InnoCentive story, Kasparov versus the World relied on a
restructuring of expert attention. To understand how this worked, let’s
return to the game-making move suggested by Irina Krush, move
number 10, the move Kasparov praised as “a great move, an important
contribution to chess.” Krush’s suggestion didn’t come from thin air. She
had the idea for move 10 a full month before Kasparov versus the World
began, during a study session at the World Open chess tournament in
Philadelphia. At the time, she did a brief analysis, and talked the move
over with her trainers, grandmasters Giorgi Kacheishvili and Ron
Henley, before putting the idea aside. It was a lucky chance that
Kasparov versus the World opened in a way that let Krush use the move
she’d been considering in Philadelphia. It certainly wasn’t something she
could completely control, because Kasparov was playing the white
pieces, and so playing first, which allowed him to dictate the initial
direction of the game. Still, a full week before move 10 was played,
Krush and her trainers were alive to the possibility that the game might
head in this direction, and began to analyze the pros and cons of Krush’s
idea more intensively.



It’s important to appreciate that in nearly all ways Kasparov was far
and away Krush’s superior as a chess player. We can express the gap
between them quite precisely, since there is a numerical rating system
that 1s used to rate chess players. In that rating system a good club player
will have a rating in the range of 1,800 to 2,000. An international master
such as Irina Krush will have a rating around 2,400. In 1999, at the time
of his game against the World, Kasparov’s rating peaked at 2,851—not
only the highest rating in chess history, but considerably higher than any
other player’s rating before or since. The 450-point rating gap between
Kasparov and Krush was roughly the same as the gap between Krush and
a good club player. It meant that Krush would only stand a chance of
winning a game against Kasparov if he made a major blunder. This is not
to say that Krush was a weak player—remember, she was the U.S.
women’s champion—but at the time of the game Kasparov was in
another class.

Given the large gap in ability between Kasparov and Krush, it appears
very fortunate that the game unfolded in a way that gave Krush a chance
to exploit her extremely specialized expertise about the opening that led
to move 10. In this narrow slice of chess, she was Kasparov’s superior,
and could give the World Team an advantage. Put another way, although
Krush was inferior to Kasparov in nearly all areas of chess, in this
special area of microexpertise she surpassed even Kasparov.

But although it was luck that Krush’s particular microexpertise could
help the World Team get the upper hand, that doesn’t mean it was simply
luck that enabled the World Team to play so well. The game was widely
publicized within the chess community, and hundreds of experienced
chess players were following the game. Chess is so rich with possible
variations that many of those players had their own individual areas of
microexpertise where they too equaled or even surpassed Kasparov. The
key to the World Team’s play was to ensure that this all this ordinarily
latent microexpertise was uncovered and acted upon in response to the
contingencies of the game. So although it was a lucky chance that Krush
in particular was the person whose microexpertise was decisive at move
10, given the number of experienced chess players involved, it was
highly likely that latent microexpertise from those players would come to
light at critical points during the game, and so help the World Team
match Kasparov.

This is, in fact, exactly what happened. As an example, after the game
ended Krush singled out move number 26 as one of her three favorite
World Team moves. Move number 26 wasn’t Krush’s idea, or the idea of



one of the established chess experts following the game. Instead, move
26 was proposed by one of the posters on the game forum, using the
name Yasha, later revealed to be Yaaqov Vaingorten, a reasonably
serious but not elite junior player. This was part of a pattern, as during
the game Krush drew extensively on the thinking of many unknown or
even anonymous contributors to the game forum, people using
pseudonyms such as Agent Scully, Solnushka, and Alekhine via Ouji. At
the same time, she al consulted with established chess players such as
international masters Ken Regan and Antti Pihlajasalo, and grandmaster
Alexander Khalifman, of the GM School. The World Team wasn’t lucky
at all. Rather, the World Team had such a diverse collection of talent
available that each time a problem arose, a member of the team rose to
the occasion; someone with just the right microexpertise would leap in to
fill the gap.

Designed Serendipity

We’ve seen how collaborative projects such as Kasparov versus the
World and InnoCentive harness latent microexpertise to overcome
challenges that would stymie most members of the collaboration. In the
most successful online collaborations this use of microexpertise
approaches an ideal in which the collaboration routinely locates people
such as Yasha and Zacary Brown, people with just the right
microexpertise for the occasion. In particular, as creative collaboration is
scaled up, problems can be exposed to people with a greater and greater
range of expertise, greatly increasing the chance that someone will see
what seems to most participants like a hard problem and think, “Hey,
that’s easy to solve.” Instead of being an occasional fortuitous
coincidence, serendipity becomes commonplace. The collaboration
achieves a kind of designed serendipity, a term I’ve adapted from the
author Jon Udell.

To understand the value of such serendipity in creative work, it helps
to have a concrete historical example. Let’s take Einstein’s work on his
greatest contribution to science, his theory of gravity, often called the



general theory of relativity. He worked on and off developing general
relativity between 1907 and 1915, often running into great difficulties.
By 1912, his work had led him to the astonishing conclusion that our
ordinary conception of the geometry of space, in which the angles of a
triangle add up to 180 degrees, is only approximately correct, and a new
kind of geometry is needed to describe space and time. Now, in case
you’re wondering what the geometry of space and time has to do with
gravity, you’re in good company: it came as a surprise to Einstein, too.
When setting out to understand gravity, Einstein had no idea that he’d
end up thinking of it as a geometric problem. Nonetheless, there he stood
in 1912 with the idea that gravity was somehow connected to a
nonstandard type of geometry. And he was stuck, because such
geometric ideas were outside his expertise. He talked his problems over
with a long-time mathematician friend, Marcel Grossmann, telling him,
“Grossmann, you must help me or else I’ll go crazy!” Fortunately, for
Einstein, Grossmann was just the right person to be talking to. He told
Einstein that the geometric ideas Einstein needed had already been
worked out in full, decades earlier, by the mathematician Bernhard
Riemann. Einstein quickly dove into Riemannian geometry, and realized
that Grossmann was right. Riemannian geometry became the
mathematical language of general relativity.

Serendipitous connections like this are crucial in creative work. In
science, especially, every active scientist carries around in their head a
host of unsolved problems. Some of those problems are big (“Figure out
how the universe began”), some of them are small (“Where’d that
damned minus sign disappear in my calculation?”), but all of them are
grist for future progress. If you’re a scientist, it’s mostly up to you to
solve those problems by yourself. If you’re lucky, you might have a few
supportive colleagues who can help you out. Very ocionally, though,
you’ll solve a problem in a completely different way. You’ll be talking
with an acquaintance, when one of your problems comes up. You're
chatting away when BANG, all of a sudden you realize that this is
exactly the right person to be talking to. Sometimes, they can just
outright solve your problem. Or sometimes they give you some crucial
insight or idea that provides the momentum needed to vanquish the
problem. This kind of fortuitous connection is one of the most exciting
and important moments in science. The problem is, such chance
connections occur too rarely. The reason designed serendipity is
important is because in creative work, most of us—even Einstein!—
spend much of our time blocked by problems that would be routine, if



only we could find the right expert to help us. As recently as 20 years
ago, finding that right expert was likely to be difficult. But, as examples
such as InnoCentive and Kasparov versus the World show, we can now
design systems that make it routine. Designed serendipity enables us to
rapidly and routinely solve many of those previously insoluble problems,
and so expands the range of our problem-solving ability.

Conversational Critical Mass

It’s challenging to convey the experience of designed serendipity. It’s
one thing to describe examples, but it’s quite another thing to be part of a
collaboration where designed serendipity is actually going on. All of a
sudden, you feel as though your mind has grown wings. You’re liberated
from much of the burden of niggling problems, problems that would be
routine if only you had access to an expert with just the right skills. It’s
profoundly enjoyable to instead spend your time concentrating on the
problems where you have a special insight and advantage. Designed
serendipity is something that must be experienced to be fully understood.
But with that said, there is a simple model that can help explain why
designed serendipity is important, and how it can qualitatively change
the nature of collaboration. That model is a nuclear chain reaction. By
reminding ourselves of what happens during a chain reaction we will
gain insight into why designed serendipity is important.

The way a chain reaction works is simple. Imagine you have somehow
come into possession of a small piece of uranium—uranium-235, the
type of uranium that goes into nuclear bombs. (There are several types of
uranium, but they don’t all undergo nuclear chain reactions. From now
on, when I say “uranium” I mean uranium-235.) Uranium atoms, it turns
out, aren’t very stable. Every once in a while, the nucleus of a uranium
atom will disintegrate, spitting out one or more neutrons. That neutron
then flies off through the piece of uranium. Uranium, like all solids, only
looks solid to the human eye. In fact, at the atomic level it’s mostly
empty space, and the neutron can travel a long way before it encounters
the nucleus of another uranium atom. In a small piece of uranium—say,
half a kilogram (about a pound)—the chances are pretty good that the
neutron will never encounter another nucleus, and will instead fly all the



way out of the piece of uranium, and just keep going. But if the piece of
uranium is just a little bit bigger—say, a kilogram—the chances are a fair
bit higher that the neutron will smash into the nucleus of another
uranium atom. That nucleus then disintegrates, and, it turns out, releases
three more neutrons. Now there are four neutrons whizzing through the
uranium—it’s four because we need to include in our count the original
neutron that started the process, which continues to move, even after
smashing into the nucleus. Each of those neutrons is, in turn, likely to
smash into four other nuclei, with the result that 16 neutrons are now on
the loose. They are likely to crash into still more nuclei, and things
rapidly cascade out of control: after 40 collisions like this, we have a
trillion trillion neutrons whizzing around. It’s because of this incredibly
rapid rate of growth that the process is called a chain reaction. Below a
certain mass, called the critical mass, a piece of uranium is simply an
inert lump of rock. Atoms inside are occasionally decaying and releasing
neutrons, but for each such neutron the average number of so-called
daughter neutrons caused by further collisions is less than one, and any
possible chain reaction quickly dies out. But with just a slightly larger
piece of uranium, larger than the critical mass, the average number of
daughter neutrons is slightly more than one. And if the average number
of daughter neutrons is even a tiny bit larger than one then the chain
reaction will take off, and cascade out of control. If the average number
of daughter neutrons is 1.1, then after just 200 collisions the uranium will
have more than 100 million neutrons flying around inside, causing still
more collisions. This is why two apparently similar pieces of uranium
will behave in completely different ways. One will lie inert, while
another just slightly larger piece will explode with the force of thousands
of tons of dynamite. A small increase in size can cause a complete
qualitative change in behavior.

Something similar goes on in a good creative collaboration. When we
attempt to solve a hard creative problem on our own, most of our ideas
go nowhere. But in a good creative collaboration, some of our ideas—
ideas we couldn’t have taken any further on our own—stimulate other
people to come up with daughter ideas of their own. Those, in turn,
stimulate other people to come up with still more ideas. And so on.
Ideally, we achieve a kind of conversational critical mass, where the
collaboration becomes self-stimulating, and we get the mutual benefit of
serendipitous connection over and over again. It’s that transition that is
enabled by designed serendipity, and which is why the experience of
designed serendipity feels so different from ordinary collaboration. It



occurs when collaboration is scaled up, increasing the number and
diversity of participants, and so increasing the chance that one idea will
stimulate another new idea. In the Polymath Project, for example, Tim
Gowers commented that the main thing that sped up the process was that
he and other participants often “found [themselves] having thoughts that
[they] would not have had without some chance remark of another
contributor.” In Kasparov versus the World the same thing happened,
with an idea from one team member often sparking ideas from others,
enabling the World Team to explore many different directions.

Of course, the chain reaction model shouldn’t be taken too literally as
a model of collaboration. Ideas aren’t neutrons, and the goal of
collaboration isn’t simply to go “critical,” producing a rapidly ballooning
number of ideas. We need to, at least occasionally, have the right ideas,
ideas that genuinely move us closer to a solution to our problem. It’s
possible that somewhere in the problem being tackled there’s a
bottleneck, requiring some key insight that no one in the collaboration 1s
ready to have. Still, the chain reaction model conveys well the qualitative
change that takes place when a collaboration “goes critical,” when
designed serendipity makes the number of ideas being generated in a
collaboration jump so high that the process becomes self-sustaining. That
jump qualitatively changes how we solve problems, taking us to a new
and higher level.

Amplifying Collective Intelligence

Let’s take stock of the picture of collective intelligence we’re
developing. It starts with the idea that within large groups there can be a
tremendous amount of expertise, far more than is available from any
single individual in the group. Ideally, such groups are extremely
cognitively diverse—meaning that they have a wide range of non-
overlapping expertise—but their members have enough in common that
they can communicate effectively.

Ordinarily, most of this expertise is latent. A good but not great chess
player may have individual areas of microexpertise where they equal or
surpass the world’s best chess players, but in an ordinary chess game that
is not sufficient to outweigh the many areas in which they are inferior.



But if the group is large enough, and cognitively diverse enough, then
the right tools can make it possible for the group to harness such
microexpertise when it’s needed, and so the group can far exceed the
talent of any individual. Designed serendipity can take hold, resulting in
a conversational critical mass that rapidly explores a much larger space
of ideas than any individual could on their own.

Underlying this broad picture is the fact that collectively we know far
more than even the most brilliant individuals. Centuries ago it was,
perhaps, possible for a single brilliant individual—an Aristotle or
Hypatia or Leonardo—to surpass all others across many areas of
knowledge. Today, human knowledge has expanded so that this is no
longer possible. Knowledge has been decentralized, and is now held
across many minds. Even the most brilliant people, people such as
mathematicians Tim Gowers and Terence Tao and chess player Garry
Kasparov, have an unsurpassed mastery of only a tiny fraction of our
knowledge. Even within their areas of expertise, they’re often surpassed
in specialized ways by other people, people with particular areas of
microexpertise. By restructuring expert attention online tools can enable
that microexpertise to be applied when and where it is most needed.

With this point of view in mind, we see that the problem of amplifying
collective intelligence is to direct microexpertise where it will be of most
use. The purpose of the online tools is to help people figure out where
they should direct their attention. The better the tools can direct people’s
attention, the more successful the collaboration will be. Put another way,
the online tools create an architecture of attention whose purpose is to
help participants find tasks where they have the greatest comparative
advantage. Ideally, that architecture of attention will bring the attention
of the right expert to the right problems. The more effectively expert
attention is allocated in this way, the more effectively problems can be
solved. (See the endnotes for discussion of the related idea of the
architecture of participation, suggested by technology expert Tim
O’Reilly.) This view of collective intelligence is summarized in the
Summary and Preview box, which also previews many of the ideas about
amplifying collective intelligence developed in the remainder of part 1.

Summary and Preview: How to Amplify Collective Intelligence

To amplify collectivegence, we should scale up collaborations,
increasing the cognitive diversity and range of available expertise as
much as possible. This broadens the range of problems that can easily be
solved. The challenge in scaling up collaboration is that each participant



has only a limited amount of attention to devote to the collaboration.
That limits the volume of contributions to the collaboration that any one
participant can pay attention to. To scale up the collaboration while
respecting this limitation, the online tools must establish an architecture
of attention that directs each participant’s attention where it is best suited
—that is, where they have maximal comparative advantage. Ideally, the
collaboration will achieve designed serendipity, so that a problem that
seems hard to the person posing it finds its way to a person with just the
right microexpertise to easily solve it (or stimulate further progress).
Conversational critical mass is achieved, and the collaboration becomes
self-stimulating, with new ideas constantly being explored. In the next
chapter, chapter 4, we’ll see many collaborative patterns that can help
achieve these ends, including:

* Modularizing the collaboration, that is, figuring out ways to split
up the overall task into smaller subtasks that can be attacked
independently or nearly independently. This reduces barriers to
entry by new people, and thus broadens the range of available
expertise. Modularity is often difficult to achieve, requiring a
conscious, relentless commitment on the part of participants.

* Encouraging small contributions, again to reduce barriers to entry,
and to broaden the range of available expertise.

* Developing a rich and well structured information commons, so
people can build on earlier work. The easier it is to find and reuse
carlier work, the faster the information commons will grow.

In chapter 5 we’ll examine the limits to collective intelligence. We’ll
find that for collective intelligence to be successful, participants must be
committed to a shared body of methods for reasoning, so disagreements
between participants can be resolved, and do not cause permanent rifts.
Such a shared body of methods is available in fields such as chess,
programming, and science, but not always in other fields. For example,
artists may be fundamentally divided over basic aesthetic principles.
Such divisions will prevent collaboration from scaling up, and so prevent
designed serendipity and conversational critical mass.



How Online Collaboration Goes Beyond
Conventional Organizations

Using collective intelligence to solve problems is not new.
Historically, groups have used three main ways to solve creative
problems: (1) large formal organizations, such as the hundreds or
thousands of people who may be involved in creating a movie, say, or a
new electronic gadget; (2) the market system; and (3) conversation in
small informal groups. In the remainder of this chapter we’ll investigate
how online tools can take us beyond these three existing ways of doing
group problem solving.

To understand how online collaboration goes beyond conventional
organizations, consider a movie production. A modern blockster movie
may employ hundreds or even thousands of people—the 2009 movie
Avatar employed 2,000 people. But unlike the participants in Kasparov
versus the World or the Polymath Project, each employee has their own
assigned role in the production. An employee in the movie’s art
department won’t usually give advice to a violin player in the orchestra.
Yet that’s exactly the kind of decision making that happened in Kasparov
versus the World. Recall the critical move number 26 suggested by
Yasha. In movie terms, it was as though an unknown stranger had
wandered on set, made a crucial suggestion to the director, completely
changing the course of the movie, and then wandered off.

Of course, there are such stories in the movies. Actor Mel Gibson got
his big break when a friend who was auditioning for the movie Mad Max
asked to be driven to the audition. Gibson wasn’t auditioning, but had
gotten into a brawl at a party the night before, and had bruises all over
his face. The casting agent decided that was the look the movie needed,
and Gibson was invited back, completely changing the movie, and
launching him on the path to international stardom.

In the world of movies this is an unusual story. But in Kasparov versus
the World this kind of occurrence wasn’t a lucky one-off, it was the
essence of the way the World Team played. There was no preplanned,
static division of labor, as in a conventional organization. Instead, there
was a dynamic division of labor, in which every player on the World
Team had the opportunity, at least in principle, to be involved in every
move.



Let me make more precise what I mean by a dynamic division of
labor. It’s a division of labor where all participants in a collaboration can
respond to the problems at hand, as they arise. Zacary Brown saw
ASSET’s problem, and realized he could solve it. Yasha followed along
the World Team’s progress, and realized he had a special insight at move
26. And all participants in the Polymath Project could follow the rapidly
evolving conversation, and jump in whenever they had a special insight.
In conventional offline organizations, such flexible responses are usually
only possible in small groups, if at all. In larger groups different group
members focus on their own preassigned areas of responsibility. Online
tools change this, making it possible for large groups to harness each
participant’s special areas of microexpertise, just-in-time as the need for
that expertise arises. That’s what [ mean by a dynamic division of labor.
Ideally, as we saw earlier, this will lead to designed serendipity. But even
when that doesn’t happen, the dynamic division of labor is still strikingly
different from the conventional static division of labor.

None of this is to deny the value of a static division of labor. We’ve
achieved enormous improvements in our ability to manufacture goods by
improving the static division of labor—think of Henry Ford’s assembly
line, or even Adam Smith’s hypothetical pin factory. But while such a
division of labor is well suited to the manufacture of goods, using a
predictable and repetitive process, it’s been less useful in solving hard
creative problems. The reason is that in creative work it’s often the
unplanned and unexpected insights and connections that matter the most.
In many cases, what makes a creative insight important is precisely the
fact that it combines ideas that previously were thought to be unrelated.
The more unrelated, the more important the connection—recall the
astounding connectionnstein and Grossmann made between gravity and
Riemannian geometry. Because of this, the greatest creative work can’t
be planned as part of a conventional static division of labor. No one
could have predicted that Kasparov versus the World would unfold the
way it did, and so it wasn’t possible to anticipate that Krush’s special
microexpertise would be needed to cope with the position that occurred
at move 10. And it certainly wasn’t possible to anticipate the need for
Yasha on move 26. It was only possible to do that division of labor
dynamically, as the situation arose.

The reason this all matters i1s that for hard creative problems, until
recently we’ve had to rely on the genius of individuals and small groups,
and lucky occasional serendipitous interactions. This limits the range of
expertise that can be brought to bear. Even in a task such as movie



making, with its reputation for being free-wheeling, the major creative
decisions are mostly made by a small number of people. Now, it should
be said that modern organizations aren’t completely wed to the static
assembly-line style of doing things. They often achieve a dynamic
division of labor on a small scale, with small groups working in creative
teams. That happens, for instance, in movie productions, and it also
happens in many other creative organizations, including celebrated
organizations such as Lockheed Martin’s Skunk Works, or the Manhattan
Project, which developed the atomic bomb. Management techniques
such as Total Quality Management and lean manufacturing incorporate
ideas that help enable a more dynamic division of labor—a famous
example 1s the way Toyota delegates to factory workers great
responsibility for finding and fixing manufacturing defects on the fly.
What is new about online tools is that they make it far easier to do such a
dynamic division of labor on a large scale, bringing the expertise of
much larger groups to bear on hard creative problems.

The distinction between dynamic and static division of labor also
illuminates the difference between online collaborations and
conventional large-scale scientific collaboration. Consider, for example,
the collaboration of 138 particle physicists whose work led to the 1983
discovery of the Z boson, a new fundamental particle of nature, at
Europe’s CERN particle accelerator. Unlike Kasparov versus the World
or the Polymath Project, each of the people in the CERN collaboration
was hired to fill a set role. The roles ranged over many carefully chosen
specialties, from engineers whose job was to cool down the particle
beam, to statisticians whose job was to make sense of the complex
experimental results. Such specialized collaborations can accomplish
remarkable things, but with their relatively fixed roles and static division
of labor they leave a great deal of microexpertise latent, and show little
flexibility in their purpose. Their inflexibility means that while they can
do extremely important science, it’s not a model that can easily be
adapted to the more fluid ends characteristic of much of the most
creative scientific work.

How Online Collaboration Goes Beyond the
Market



One of humanity’s most powerful tools for amplifying collective
intelligence is the market system, and we can learn much about online
collaboration by comparing it to the market. Of course, the market is so
familiar that it’s tempting to take it for granted, and to focus only on
examples where it amplifies collective stupidity, such as the crashes of
2008 and 1929. But most of the time the market really does amplify our
collective intelligence. In his book The Company of Strangers, the
British economist Paul Seabright tells how two years after the breakup of
the Soviet Union he met with a senior Russian official who was visiting
the UK to learn about the free market. “Please understand that we are
keen to move towards a market system,” the Russian official said, “But
we need to understand the fundamental details of how such a system
works. Tell me, for example: who is in charge of the supply of bread to
the population of London?”

The familiar but still astonishing answer to this question is that in a
market economy, everyone is in charge. As the market price of bread
goes up and down, it informs our collective behavior: whether to plant a
new wheat field, or leave it fallow; whether to open that new bakery
you’ve been thinking about opening on the corner; or simply whether to
buy two or three loaves of bread this week. The prices are signals to help
coordinate the actions of suppliers and consumers: as demand for a good
goes up, so does the price, motivating new suppliers to enter the market.
The result is a marvelous dance of actions that puts food on our tables,
cars in our garages, and smartphones in our pockets. Familiarity makes
us take this for granted, but the dance is really a miraculous mass
collaboration, mediated so smoothly by the market that it’s only noticed
when absent.

What makes prices useful is that, as emphasized by the economist
Friedrich von Hayek, they aggregate an enormous amount of hidden
knowledge—knowledge that would otherwise not be apparent to all the
people interested in the production or consumption of goods. By using
prices to aggregate this knowledge and inform further actions, the market
produces outcomes superior to even the brightest and best informed
individuals. It enables a dynamic division of labor: if flooding wipes out
the wheat crop in much of the United States, then the price will rise, and
other suppliers of wheat will respond by working hard to increase the
supply.

Markets and the price system thus have many of the properties we’ve
identified in online collaboration. In contrast to conventional offline



organizations, they use both a dynamic division of labor and designed
serendipity. But online collaborations such as the Polymath Project go
beyond offline markets in the complexity of the problems under
consideration, and in the speed with which unanticipated problems may
be posed and addressed. Even if you have no interest in mathematics, it’s
easy to appreciate the rich flavor of this “dumb question” posed by
Polymath participant Ryan O’Donnell:

Can someone help me with this dumb question?
Suppose A4 = B are the family of sets not including the last element
n. Then 4 and B have density about 1/2 within K' N, 4. (We’re

thinking k(n) — oo, k(n)/n — 0 here, right?) [. . .]

That’s just the beginning of the question; it’s a far cry from “What’s
the price of bread?” O’Donnell’s question is far too specialized and
context-dependent to be addressed by a conventional offline market. He
could, perhaps, have taken out an advertisement in a mathematics journal
asking for help, but the bother would have been greater than the benefit.
In an online collaboration such as the Polymath Project such a question
can occur to someone,be broadcast to other participants, and answered,
all within minutes or hours. Online tools thus combine the dynamic
division of labor and designed serendipity found in markets with the
flexibility and spontaneity of everyday conversation. This combination
makes them a big step forward from offline markets, and, in particular,
makes them well suited to attacking hard creative problems.

So far I’ve focused on conventional offline markets. Of course, in
recent years markets have adopted the internet and other modern
communications technologies, and as they’ve done so they’ve changed
and become more complex. Increasingly, they too can be used to address
very specialized and context-dependent questions. In this sense online
tools are gradually subsuming and extending markets. Something similar
is also going on in the conventional organizations we discussed in the
last section: online tools are increasingly used as the command and
control infrastructure in those organizations. And so online tools can
subsume and extend both conventional markets and conventional
organizations. And, as we’ll see shortly, they can also subsume and
extend the third historical form of collaboration, small group
conversation. In each case, the online tools are enabling architectures of
attention that go beyond what is possible in offline methods of
collaboration.



How Online Collaboration Compares to Offline
Small-Group Conversation

In many respects online collaborations such as the Polymath Project
and Kasparov versus the World resemble offline small-group
conversation. As we’ll see, in some ways offline conversation is actually
genuinely better than online collaboration, while in other ways, it is
distinctly inferior. But before we compare the two, let’s first clear the air
by disposing of two common but fallacious arguments that purport to
relate online collaboration to offline conversation.

The first fallacy is to think that online collaboration is somehow
similar to dreary committee work. Sometimes people hear about a
project such as the Polymath Project, and their mind leaps to the
unflattering stereotypes we associate with committees—*“A camel is a
horse designed by committee,” and so on. It’s true that many committees
squelch creativity and commitment. But it doesn’t follow that online
collaboration has the same problems. When you look closely at projects
such as the Polymath Project and Kasparov versus the World, they don’t
seem much like dysfunctional committees. Instead, they are vibrant
communities filled with creativity and commitment.

How do such collaborations escape the problems of dysfunctional
committees? Understanding why some groups work well while other
don’t is a complex problem, and I won’t comprehensively address this
question here. But there are two powerful factors that help explain why
online collaboration often works well where a committee would not.
First, committees are often made up of people who’ve been dragooned to
sit on them, while collaborations such as the Polymath Project are filled
with enthusiastic volunteers. That passionate commitment makes a big
difference. Second, while a committee can be greatly slowed down by a
few obstructive members, online collaborations can often ignore those
people. In the Polymath Project, for example, it was easy for well-
informed participants to ignore the occasional well-intentioned but
unhelpful contribution. Collaborating online is simply not the same as
committee work.

A second fallacy sometimes put forward by skeptics of online
collaboration is that it’s always possible to replace online collaborations
by equivalent offline collaborations. For example, they might argue that
given enough patience and a room full of mathematicians, you could do



an offline “simulation” of the Polymath Project. There are two problems
with this argument. The first is that, as a practical matter, it’s far easier to
get together online than offline. So the objection is a little like saying
that the invention of the automobile or passenger train changed nothing
about travel, because people had always been able in principle to use a
horse and buggy to travel long distances. The observation is true, but has
little practical importance for how people actually behave. The second
problem is that human behavior in a room full of mathematicians would
in practice be dramatically different than in the Polymath Project. To
pick one of many examples of differences: offline, if someone speaks
with you when you’re tired and cranky, you may not understand what
they said; online, you can read and reread at your leisure, when you’re
alert and enthused. Because of these and many other differences, you can
only do the offline simulation if you make unrealistic assumptions about
how humans would behave in the room. This is not to say a room full of
mathematicians couldn’t collaborate to do remarkable work. But it
wouldn’t be using a Polymath-style process, it would be using a different
architecture of attention. Online tools really do enable us to collaborate
in new ways.

With those two fallacies out of the way, what of the ways in which
offline conversation is genuinely superior to online collaboration? One
especially stands out: the rich nature of face-to-face contact. Body
language, facial expression, tone of voice, and regular informal contact
are all tremendously important to effective collaboration, and cannot be
replaced. With people you like, in-person conversation is enjoyable and
stimulating, and online collaboration loses something by contrast. Of
course, this loss is gradually being offset by more expressive
collaborative technologies—a tool such as Skype video chat is
remarkably effective as a way to collaborate. Over the longer run ideas
such as virtual worlds and augmented reality may even make online
contact better than face-to-face contact. Still, today the online experience
of direct person-to-person collaboration lacks much of the richness of
offline collaboration. It’s tempting to conclude that online collaboration
can’t be as good as offline.

The trouble with this conclusion is that it ignores the problem of how
you find the right person to work with in the first place. This is perhaps
because finding that right person has historically been such a hard
problem that we usually don’t bother. Offline, it can take months to track
down a new collaborator with expertise that complements your own in
just the right way. But that changes when you can ask a question in an



online forum and get a response ten minutes later from one of the
world’s leading experts on the topic you asked about. In creative problem
solving, it’s often better to have a terse twenty-minute text-only
interaction with an expert who can solve your problem with ease, rather
than weeks of enjoyable face-to-face discussion with someone whose
knowledge i1s not much different than your own. And, in any case, you
don’t have to make this choice. In practice, you can use relatively
impersonal tools to find the right person or people for the problem at
hand, and more expressive tools such as video chat, virtual worlds, and
augmented reality to make working wit that person or people as effective
as possible.

To put it another way, the big advantages of online collaboration over
offline conversation are in scale and cognitive diversity. Imagine that the
people at ASSET India had gotten together a group to brainstorm ideas
for wireless routers. Unless they were extremely lucky, the group would
not have contained anyone with the same kind of expertise as Zacary
Brown. By increasing the scale of collaboration, online tools expand the
range of available expertise, reducing the chance that the group will be
blocked by a problem that no one in the group can solve. Ideally,
designed serendipity and conversational critical mass will occur,
enabling the group to explore in depth a far wider range of ideas than is
possible in a small group, with its limited expertise.

How do online tools enable conversation to be scaled up? The obvious
answer is that online tools make it easier for experts around the world to
get together as part of a group. That is important, but it’s only a small
part of what’s going on. In fact, by using a carefully designed
architecture of attention, online tools enable collaborations to involve far
more people than is practical in offline conversation. Let me describe
how this worked in the Polymath Project. Superficially, the format of the
Polymath Project, based on comments on blogs, seems similar to
discussions of mathematics in face-to-face conversation. But it goes
further in three important ways. First, when working online people pre-
filter their comments more than in ordinary mathematical conversation.
In offline conversations even the best mathematicians have long pauses,
need to backtrack, and occasionally get confused. In the Polymath
Project most comments distilled one point in a relatively sharp way.
Second, as a reader it’s easy to skip rapidly over blog comments. When
you’re face to face, if you don’t understand what someone’s saying, you
may be stuck listening to them speak incomprehensibly for ten minutes.
But on a blog you can glance at a comment for a few seconds, take note



of the general idea, and move on. Third, when you skip a comment you
always know that you can return to it later. It’s archived, and easily
findable using search engines. The overall effect of these three
differences is to scale up the number of people who can participate in the
conversation. By increasing the scale of conversation the blog medium
gives us access to the best ideas from a more cognitively diverse set of
participants, and so designed serendipity and conversational critical mass
are more likely to occur.

There is, however, an inherent trade-off in scaling up collaboration.
On the one hand, a collaboration should involve the largest and most
cognitively diverse group of participants possible. On the other hand,
once the collaboration gets large enough participants cannot possibly pay
attention to everything that’s going on. Instead, they perforce must begin
paying attention to only some of the contributions. Ideally, the
architecture of attention will direct participants to places where their
particular talents are best suited to take the next step—where they have
maximal comparative advantage. So each participant sees only part of
the larger collaboration. As a simple example, InnoCentive classifies
Challenges into subject areas, to help participants find the Challenges of
most interest to them. In the next chapter, we’ll see some more
sophisticated ways of helping people decide where to direct their
attention. In this way, it’s possible to scale beyond the point where each
participant must pay attention to the entire collaboration. Put another
way, the art of scaling is to Iter contributions so each participant sees
only the contributions they personally will find most valuable and
stimulating; the important thing isn’t what we see, it’s what we get to
ignore. The better the filters, the better our attention is matched to
opportunities to contribute. In a nutshell, an ideal architecture of
attention enables the largest, most cognitively diverse group to best
utilize the limited available attention so that at any given time each
participant is maximizing their comparative advantage. Collaborations
such as the Polymath Project go only a small part of the way toward this
goal. By using a better architecture of attention it is possible to scale
collaboration even further than the Polymath Project. In the next chapter
we examine several patterns that can be used to scale up online
collaborations, and to make better use of the available expertise.



CHAPTER 4



Patterns of Online Collaboration

On August 26,1991, at 2:12 am, a 21-year-old Finnish programming
student named Linus Torvalds posted a short note to an online forum for
programmers. It read, in part:

I’m doing a (free) operating system (just a hobby, won’t be big
and professional like gnu) for 386(486) AT clones . . . I’d like to
know what features most people would want. Any suggestions are
welcome, but I won’t promise I’ll implement them :-)

Just 14 minutes later, another user responded with the words “Tell us
more!” and asked several questions. Nearly six weeks later, on October
5, Torvalds posted a second note, announcing that the code for his
operating system—soon to be dubbed Linux—was now publicly
available. He wrote in the announcement:

This 1s a program for hackers by a hacker. I’ve enjouyed doing
it, and somebody might enjoy looking at it and even modifying it
for their own needs. It is still small enough to understand, use and
modify, and I’m looking forward to any comments you might have.

Torvalds was an unknown, a student working in relative isolation at
the University of Helsinki, not part of some hip Silicon Valley startup
company. Still, what he’d announced was interesting to many hackers.
The operating system is the nerve center of a computer, the piece that
makes the rest of it tick. Handing a hardcore hacker the code for an
operating system is like giving an artist the keys to the Sistine Chapel
and asking them to redecorate. Shortly after Torvalds’s post, a Linux
activists mailing list was formed, and just three months later the mailing
list had grown to 196 members.

Torvalds not only made the code for his operating system freely
available, he also encouraged other programmers to email him code for



possible incorporation into Linux. By doing this, Torvalds initiated the
formation and rapid growth of a community of Linux developers—
programmers who collectively helped him improve Linux. By March of
1994, 80 people were named as contributors in the Linux Credits file,
and people were contributing code at an astronomical rate. In 1995, the
company Red Hat formed, marketing one of the first commercially
successful versions of Linux; in 1999, Red Hat went public on he New
York Stock Exchange, with a market value of 3 billion dollars by the end
of its first day of trading. By early 2008, the Linux kernel—the core part
of the Linux operating system—contained nearly 9 million lines of code,
written by a collaboration of more than 1,000 people. It is one of the
most complex engineering artifacts ever constructed.

Linux has become so widespread that it’s easy to take it for granted.
Although Microsoft Windows remains the dominant operating system
for home and office use, in many other areas Linux surpasses it.
Companies such as Google, Yahoo!, and Amazon all use enormous
Linux clusters, containing tens or hundreds of thousands of computers.
In Hollywood animation and visual effects companies, Linux is the
dominant operating system, surpassing Windows and MacOS and
playing a major role at Pixar, Dreamworks, and Industrial Light and
Magic. In the consumer electronics industry, companies such as Sony,
Nokia, and Motorola use Linux in everything from mobile phones to
televisions. This ubiquity makes it easy to forget how remarkable the
story of Linux is. Imagine that in 1991 a 21-year-old Finnish
programming student had approached you, telling you that he’d written
the core of an operating system and was planning to release the code, and
oh, by the way, he was hoping to recruit a volunteer army of
programmers to improve it. You’d think it was ludicrous. It was
ludicrous. So ludicrous that not even Torvalds himself imagined it would
happen.

Linux is an example of open source software. Open source software
projects have two key attributes. First, the code is made publicly
available, so anyone can experiment with and modify the code, not just
the original programmer. Second, other people are encouraged to
contribute improvements to the code. This might mean sending in a bug
report when something goes wrong, or perhaps suggesting a change to a
single line of code, or even writing a major code module containing
thousands of lines of code. The most successful open source projects
recruit large numbers of contributors, who together can develop software
far more complex than any individual programmer could develop on



their own. To give you some idea of the scale, in 2007 and 2008 Linux
developers added an average of 4,300 lines of code per day to the Linux
kernel, deleted 1,800 lines, and modified 1,500 lines. That’s an
astounding rate of change—on a large software project, an experienced
developer will typically write a few thousand lines of code per year.

Of course, most open source projects have fewer contributors than
Linux. A popular repository of open source projects called SourceForge
houses more than 230,000 open source projects. Nearly all those projects
have only one or a few contributors. But a small number of projects have
captured the imagination of programmers, drawing in tens, hundreds, or
thousands of contributors.

Open source started in the programming world, but it isn’t
fundamentally about programming. Rather, open source is a general
design methodology that can be applied to any project involving digital
information. If you’re an architect, for example, you can do open source
architecture: simply share the designs for your buildings freely, and
encourage others to contribute improvements. In 2006, an architect
named Cameron Sinclair and a journalist named Kate Stohr launched the
Open Architecture Network, which is creating an online community for
open source architecture—a kind of Source-Forge for architecture. As of
early 2010, the site contained more than 4,000 projects, many w floor
plans, discussions of building materials, photographs of finished
buildings, and so on, all available for reuse and improvement by others.
The site focuses especially on designs for use in the developing world,
and Sinclair and Stohr hope that it will help the best architectural ideas
and innovations spread more quickly. An example is shown in figure 4.1,
the design for a primary school built in Gando, a town of 3,000 people in
the tiny country of Burkina Faso (previously known as Upper Volta) in
West Africa. The design comes complete with floor plans, elevations,
and many other design details, as well as photos of the finished school.
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Figure 4.1. Top: a primary school in the town of Gando, in the
country of Burkina Faso in West Africa. Bottom: one of several design
documents for the school, freely available for download from the Open
Architecture Network. Other people may use the design documents, and
modify them for their own needs. Credit: Siméon Duchaud / Aga Khan
Award for Architecture.

It’s not just architecture that can be open source. If you’re a digital
artist, you can do open source art: share the files for your digital art
freely, and encourage others to contribute improvements. If you’re a
biologist you can do open source biology: share DNA designs for living
things, and encourage others to contribute improvements. There’s a
community of biologists doing exactly that. If you’re writing an



encyclopedia, you can share the text of your encyclopedia articles freely,
and encourage others to contribute improvements. That’s how Wikipedia
1s written: Wikipedia is an open source project. The underlying pattern in
all these projects is the same: share your digital design, and encourage
other people to contribute changes. The Polymath Project doesn’t quite
follow this pattern, but it does use similar ideas, creating an online space
where people can share their ideas, and work to improve other people’s
ideas.

So far in this book, we’ve looked at several examples that show how
online tools can make groups smarter. Open source collaborations
usually have different purposes: they’re about giving people the freedom
to improve and modify other people’s work, and—for big projects, such
as Linux and Wikipedia—about enabling groups to create projects more
complex than any individual could create on their own. This difference
in purpose is reflected in the fact that while Wikipedia 1s impressive, for
many subjects the world’s top experts could write better articles.
Similarly, the code for Linux merely needs to be good enough to work, it
doesn’t need to be of the highest quality throughout. But despite this
difference in intent from our earlier examples, open source can still teach
us much about how to amplify collective intelligence. In particular, open
source collaborations have been superbly effective at scaling up, and so
increasing the cognitive diversity and range of microexpertise available
to the collaboration. In this chapter we’ll identify four powerful patterns
that open source collaborations have used to scale. (1) a relentless
commitment to working in a modular way, finding clever ways of
splitting up the overall task into smaller subtasks; (2) encouraging small
contributions, to reduce barriers to entry; (3) allowing easy reuse of
earlier work by other people; and (4) using signaling mechanisms such
as scores to help people decide where to direct their attention. These
patterns can be incorporated into any architecture of attention, and so be
used to amplify coe intelligence.

The Importance of Being Modular

To understand how open source collaborations scale, let’s look at a
time when the Linux collaboration almost failed to scale, a time when



the Linux developer community almost fractured into two separate
camps, working on two separate versions of Linux. The incident started
innocuously, on September 29, 1998, with a post to the Linux kernel
mailing list by developer Michael Harnois. Harnois wrote to say that he
was having problems with part of the Linux display system. This kind of
complaint was not unusual—indeed, such complaints are the grist that
Linux developers use to improve the code—and a well-respected Linux
developer named Geert Uytterhoeven quickly replied to Harnois.
Uytterhoeven told him not to waste his time, that the problem had
already been fixed, and the only reason Harnois was having problems
was because the code fixing the problem wasn’t yet included in the
official Linux code base, maintained by Linus Torvalds.

So far, this was business as usual. But what Uytterhoeven added next
sparked a major blowup. He told Harnois that while the fix for his
problem wasn’t yet in the official code base, he could get a copy of the
fix from a website called VGER. VGER was a service started as a mirror
(that is, a copy) of the official Linux code, an alternate location where
people could download Linux, in case the main site was down or hard to
reach. But some Linux developers were growing unhappy with Torvalds,
believing that he wasn’t integrating their contributions fast enough into
the official Linux code base. The group of volunteers running VGER, on
the other hand, were accepting some of those contributions, and it was
quietly known that the “VGER Linux” was starting to run ahead of the
official Linux in crucial ways.

Less than two hours after Uytterhoeven’s post, Linus Torvalds replied
with a terse post to the mailing list, saying Harnois was “not wasting
time,” and that VGER was irrelevant to Linux development. Torvalds’s
post touched off an avalanche of responses, with some of the most
respected Linux contributors complaining loudly that this was not the
first time he had failed to integrate an important contribution into the
official Linux code. Several complained that they had sent Torvalds code
contributions multiple times without receiving any acknowledgment,
sometimes even for work they’d done at his request. Torvalds, for his
part, also expressed frustration:

Quite frankly, this particular discussion (and others before it)
has just made me irritable, and is ADDING pressure. Instead, I’d
suggest that if you have a complaint about how I handle
[contributions], you think about what I end up having to deal with
for five minutes.



Go away, people. . . . I’'m not interested, I’'m taking a vacation,
and I don’t want to hear about it any more. In short, get the hell out
of my mailbox.

To be successful, a collaboration must divide the problem it’s
attacking into tasks that can be done by single individuals. By the time of
this blowup the Linux community had grown so much that the task of
reviewing and integrating code submissions was beyond Torvalds (or
probably any single person)all>ADD the words of one of the Linux
developers involved in the imbroglio, Larry McVoy, “Linus doesn’t
scale.” As a result, the Linux development community was no longer
working effectively, and was in danger of fragmenting into two or more
separate communities. This wasn’t because Torvalds or anyone else was
doing anything wrong. Instead, it was a consequence of success: the
community had grown so much that the old way of doing things no
longer worked.

The obvious way to solve the problem was to split the task of
approving code contributions between several people. But some Linux
developers worried that Torvalds’s broad understanding of the Linux
kernel might be essential to reviewing and approving code contributions.
Might allowing others to approve contributions actually damage Linux?
Perhaps some essential but previously tacit functionality in the Linux
collaboration might be lost. Fortunately, those fears were not borne out.
After a heated online discussion, and a face-to-face meeting of some of
the leading Linux developers, including Torvalds and the creator of
VGER, Dave Miller, Torvalds agreed to delegate more decision making
to lieutenants, and this went ahead without any evident ill effects.

In some collaborations it’s easy to divide the problem being attacked
into smaller tasks. Recall the galaxy classification project Galaxy Zoo,
which we met in the opening chapter. Galaxy Zoo asks contributors to
answer questions about just one galaxy at a time, dividing the problem of
classifying galaxies up into millions of tiny tasks. That’s a simple but
effective way of dividing Galaxy Zoo’s overall problem.

Sometimes, however, this kind of modularity is much harder to
achieve. In the Polymath Project, work was carried out through
comments on blog postings. In the early days of the project, it was easy
for interested mathematicians to join the discussion. But the number of
comments quickly climbed, eventually reaching 800 comments and



170,000 words. For outsiders this was a daunting barrier to entry, since
the comments weren’t organized in a way that would allow them to jump
into the discussion without first understanding the bulk of the earlier
contributions. Although the Polymath Project was a large collaboration
by conventional standards in mathematics, with contributions from 27
people, it would likely have been even larger had the discussion been
less monolithic and more modular. That, in turn, would have increased
cognitive diversity, making a greater range of expertise available to the
collaboration.

Is this monolithic narrative style an inevitable feature of collaborations
such as the Polymath Project? Or is it possible to devise a more modular
approach that breaks the collaboration up into sub-projects? We can get
insight into these questions by taking a closer look at large open source
projects such as Linux. Those projects have not achieved modularity
easily or by chance, but by working very, very hard at it. They’ve made a
conscious commitment to be modular, and then relentlessly followed
through on that commitment, even when it required a great deal of work.
We’ve seen an example of this in the way the Linux community
responded to the VGER crisis. But even more impressive, albeit in a
quieter way, is the day-in, day-out commitment the Linux developer
community shows to being modular. As an example, the original code
base for the Linux kernel didn’t have the sort of simple modular structure
that would make it easy for potential developers to get involved in
improving the code. For Linux release 2.0 the entire Linux code was
substantially rewritten and reorganized to make it modular. That perhaps
sounds easy on paper, but it required a huge coordinated effort by the
Linux developers. Here’s how Torvalds explained it:

With the Linux kernel it became clear very quickly that we want
to have a system which is as modular as possible. The open-source
development model really requires this, because otherwise you
can’t easily have people working in parallel.

With the 2.0 kernel Linux really grew up a lot. This was the point
that we added loadable kernel modules. This obviously improved
modularity by making an explicit structure for writing modules.
Programmers could work on different modules without risk of
interference. I could keep control over what was written into the
kernel proper. So once again managing people and managing code
led to the same design decision. To keep the number of people



working on Linux coordinated, we needed something like kernel
modules. But from a design point of view, it was also the right thing
to do.

This pattern of conscious, relentless modularity is seen in most large
open source collaborations. It’s often required even in projects where
modularity looks as though it would be easy to achieve, such as
Wikipedia. On the surface, Wikipedia appears to be merely a collection
of encyclopedia articles, with a simple, natural modular structure: the
writing 1s naturally divided up between the different articles. But that
superficial modularity is only part of the story. Writing an encyclopedia
involves many tasks beyond editing the articles, and that additional
complexity is reflected in Wikipedia’s structure. Perhaps the simplest
example is that every Wikipedia article has an associated “Talk™ page. If
you don’t know what a Wikipedia Talk page is, start up your web
browser, and load Wikipedia’s “Geology” article
(http://en.wikipedia.org/wiki/Geology). At the top of the page, you’ll
notice a tab labeled “Discussion.” Click on the tab, and you’ll be taken to
the Talk page for the “Geology” article. That’s where discussion about
the article goes on among Wikipedia editors: discussion of shortcomings
in the article, discussion of how the article can be improved, and even
discussion of whether the article should exist in the first place. Such Talk
pages are a locus for conversations about many tasks that are essential
for Wikipedia to work properly, but that can’t be carried out on the
article pages. Beyond the Talk pages, Wikipedia also has a vast array of
other special pages, each aimed at specific tasks. The “Village Pump”
page, for example, is for discussion of Wikipedia policy, technical issues,
and so on. There’s a page listing articles being considered for deletion
from Wikipedia. Many Wikipedia pages deal with topics only of interest
to the Wikipedia community itself. Some of these pages are funny:
there’s a 1,181-question test to see if you’re a Wikipediholic (for anyone
who willingly sits through the entire test, I think the answer is obviously
“yes”); a list of articles with freaky titles (“22.86 Centimetre Nails,” the
metric version of the band “Nine Inch Nails,” now unfortunately
deleted); and many others. Some of the pages are sad: there is a page
listing deceased Wikipedians, with links to their user pages, where you
will often find grieving communities of friends and family. Wikipedia is
not an encyclopedia. It’s a virtual city, a city whose main export to the
world is its encyclopedia articles, but with an internal life of its own. All
those pages—the Talk pages, the eciges, the community pages, and the
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articles themselves—reflect vital tasks within Wikipedia, and help break
up the enormous problem of running an encyclopedia into many smaller
tasks. And, as in a well-run city, this division wasn’t determined in
advance by some central committee, but rather sprang into existence
organically, in response to the needs and wants of Wikipedia’s
“residents”; the editors who write Wikipedia.

When this pattern of conscious, relentless modularity isn’t used, open
source collaboration doesn’t scale. There have, for example, been many
failed attempts to use wikis and an open source approach to write a good
quality novel. One high-profile attempt was the Million Penguins
project, run by the book publisher Penguin in February and March of
2007. The idea was to recruit writers to produce a collaborative novel
using wiki software. Judged by the number of people who contributed
(1,500), the project was a success. But those people never managed to
work effectively together, and as a work of literature the result was a
failure. Early on in the project, one of the coordinators, Jon Elek, wrote,
“I’ll be happy so long as it manages to avoid becoming some sort of
robotic-zombie-assassins-against-African-ninjas-in-space-narrated-by-a-
Papal-Tiara.” The actual novel was far stranger. Here’s a short sample to
give you the flavor:

There was no possibility of taking a walk that day . . . a swim,
perhaps, but not a walk—for Artie was a whale, a humpback whale,
to be precise, at least in these moments. It was a sunny day, and
Artie would have worn his sunglasses, but being a whale meant he
didn’t have ears, which made it difficult for his sunglasses to stay
on. No matter, he thought, at least he was young and strong.

It’s easy to see why Penguin carried out this experiment. Wikis have
been successfully used to produce not just an encyclopedia, but also
many other reference works, from the fabulous Muppet Wiki
(muppet.wikia.com) to the US Intelligence Community’s Intellipedia (no
publicly accessible URL for that one, sorry!). Superficially, a novel looks
quite similar to an encyclopedia or other reference work. But the degree
of modularity sufficient to produce an encyclopedia is not sufficient to
write a first-rate novel, because it leaves some essential tasks
unperformed. Every sentence in a novel has a potential relationship to
every other sentence, a potential relationship to each story arc within the
novel, and a relationship to the overall story arc. A good author is aware
of all these relationships, and uses them to achieve resonance and



reinforcement between different parts of the story, and to avoid
dissonance and incoherence. To write a good novel, one of the tasks
always before you is to compare the sentence you’re writing right now to
all these other parts of the novel, thinking about whether it enhances or
detracts from the whole of the novel. For collaborative writing to
succeed, someone must keep track of all these possible relationships. Yet
wikis don’t provide any natural way of breaking down the problem of
keeping track of these relationships. So while wikis may work well for
short, independent articles such as appear in a reference work, they don’t
work as a collaborative medium for longer pieces of writing. Still,
collaborative technology is in its early days. My bet is that one day soon
a technology for online collaboration will be developed, probably not too
dissimilar from a wiki, but making it easy to keep track of relationships
between different parts of a novel. That will be a big step toward the first
good novel written by an open source collaboration. (Of course,
managing these relationships is only part of the challenge; in the next
chapter we’ll meet more difficulties.)

We’ve seen how Wikipedia and similar reference wikis use a carefully
chosen page structure to modularize. Another approach to modularity is
illustrated by the way work on the Firefox web browser is organized. If
you’re not familiar with Firefox, it’s a popular alternative to the Internet
Explorer web browser. Like Linux, Firefox is an open source project. But
the Firefox developers organize their work using a different approach
from that of both Linux and Wikipedia. In particular, they organize much
of their work using a tool known as an issue tracker. To understand how
the issue tracker works, imagine you’re a user of Firefox who’s run into a
bug. For example, a bug I’ve sometimes noticed is this: in my list of
Firefox bookmarks, the little pictures (called favicons) alongside my
bookmarks sometimes get mixed up. That is, the wrong picture will
show up beside a bookmark, or seemingly random favicons from other
sites will show up for no apparent reason. I’ve no idea why this happens,
and it’s only a minor irritation in an excellent product, but it can be a
little confusing. Anyway, having noticed this bug, you decide to help the
Firefox project out by reporting it. To do this, you visit Firefox’s online
issue tracker, a website where you can enter a description of the problem
you’re having, and any other details that might come in handy to people
trying to fix the bug: what webpage you were browsing when you
noticed the bug, what operating system you use, what version of Firefox,
and so on.



I asked you to imagine doing this, but actually you don’t need to
imagine it. I checked the Firefox issue tracker, and someone going by the
name Bob did exactly what I’ve just described on January 11, 2008.
Once he submitted his report for the favicon bug, it quickly made its way
to the issue tracker’s list of “Hot Bugs.” The Hot Bug list is Firefox
Central Station, with many of the developers who work on Firefox
watching the list closely. When they see a bug they think they can help
fix, they jump in. For Bob’s favicon bug a discussion thread quickly
started. Reading through the discussion, you learn that the bug is
surprisingly subtle, and actually involves more than one problem in the
Firefox code. Dozens of people eventually got involved before the bug
was conclusively fixed.

The issue tracker isn’t just for fixing bugs, it’s also used to propose
and implement new features. If you want to suggest a new feature in
Firefox, you can go to the issue tracker, suggest the feature, and a
conversation will begin. If enough people want the feature, someone will
start to code it up. The issue tracker thus acts as a smorgasbord of
problems and ideas, each with their own attached conversational threads.
It’s a great way of modularizing work: by organizing participant’s
attention around single issues, the issue tracker limits the scope of
conversation, and so limits the amount of attention people must invest to
participate. Instead of having to understand the entire previous
discussion, as in the Polymath Project, participants just need to
understand the issue at hand. This enables many more people to get
involved, and for the collaboration to benefit from a much broader range
of expertise. In other words, the payoff from relentless and conscious
modularity is that no one needs to understand the whole project in detail,
but can instead contribute where they are best able. The overall effect is
like a virtual shipyard. Many different people are s entired all over the
place, contributing to the different parts of the ship, in separate efforts,
each modest in size and scope. But the aggregate product is remarkable.

Of course, modularity isn’t the end of the story. It’s merely a single
pattern that helps scale up collaboration. The modular units are the atoms
of attention out of which the architecture of attention is built. The 1deal,
as we’ve seen, 1S to create an architecture where those modular units are
arranged in such a way that each participant sees those tasks where they
have greatest comparative advantage, and so can make the greatest
contribution. Existing tools, such as blogs, wikis, and issue trackers do
this only imperfectly. But over the long run we’ll gradually see the



emergence of a design science of attention, which helps us build tools
that best use the available expert attention.

And what of Linux? Linus Torvalds long ago gave up trying to follow
the entire Linux kernel developer community. In May 2000, a poster to
the Linux kernel mailing list complained that Torvalds wasn’t replying to
his posts. Torvalds replied as follows:

Note that nobody reads every post in linux-kernel. In fact,
nobody who expects to have time left over to actually do any real
kernel work will read even half. Except Alan Cox [one of
Torvalds’s lieutenants], but he’s actually not human, but about a
thousand gnomes working in under-ground caves in Swansea. None
of the individual gnomes read all the postings either, they just work
together really well.

Anyway, some of us can’t even read all our personal email,
simply because we get too much. I do my best.

Linux has grown greatly since Torvalds wrote that post. Today no
one, not even the superhuman Alan Cox, can follow all the work going
on. The beauty of the Linux collaboration is that it’s organized so no one
needs to.

Radical Reuse and the Information Commons

Modularity is important, but there’s an even more basic pattern of
collaboration underlying open source: the ability of open source
programmers to reuse and modify one another’s work. This may seem so
obvious as to be unworthy of consideration, but it has some surprising
consequences. The obvious impact, of course, is that programmers don’t
have to start from scratch, but instead can build on and incrementally
improve what others have done. Effectively, open source programmers
are building a publicly shared information commons. This commons
isn’t located anywhere in particular, but rather consists of all the open
source code distributed in myriad locations across the internet. This
enables a dynamic division of labor, in which code from one person can
later be improved by other people whom they have never met, with



expertise and needs they may never even have heard of. The richer the
information commons becomes, the more powerful a foundation it is for
collaboration.

Together, the community of open source programmers is creating a
remarkably active and rich information commons. A study by two
scientists at the software company SAP, Amit Deshpande and Dirk
Riehle, shows that the commons now contains more than a billion lines
of publicly available code, and is growing at a rate of more than 300
million lines per year. Want to add flames to your home movie as a
special effect? There are open source software packages for that. Want to
control your robotic home telescope? Depending on your telescope, there
may well be open source software for that. Open source software is
available to do an almost unimaginably broad range of tasks.

The emergence of this rich information commons has radically
changed the way programmers work. Before, programmers wrote their
programs largely from scratch. Their heroes were people who could, in a
few days, whip up a program that would take lesser programmers months
to write. To give you the flavor of what skills were valued in those days,
consider this story from one of the great pioneers of modern computing,
Alan Kay, a recipient of the Turing Award, the highest honor in computer
science. It’s an admiring story about the programming prowess of
Donald Knuth, another legend of computing and Turing Award recipient:

When I was at Stanford with the [artificial intelligence] project
[in the late 1960s] one of the things we used to do every
Thanksgiving is have a programming contest with people on
research projects in the Bay area. The prize I think was a turkey.

[Artificial intelligence pioneer and Stanford Professor John]
McCarthy used to make up the problems. The one year that Knuth
entered this, he won both the fastest time getting the program
running, and he also won the fastest execution time of the
algorithm. He did it on the worst system [. . .] And he basically beat
the shit out of everyone.

Today, programming has changed. Today, a great programmer isn’t
just someone who can quickly solve a problem from scratch. A great
programmer is someone who is also a master of the information



commons, someone who, when asked to solve a problem, knows how to
quickly assemble and adapt code drawn from the commons, and how to
balance that with the need to write additional code from scratch. Such a
master can build on the work of others to solve problems faster and more
reliably than other lesser programmers. It’s a kind of passive
collaboration, whose effectiveness grows as the information commons
grows. Before they’ve written even a single line of code, today’s
programmers are often building on the work of thousands of other
programmers. As some programmers like to say: “Good programmers
code; great programmers reuse other people’s code.”

In programming, the information commons took off in the early
1990s, with broad adoption of the internet. But in a more primitive form
the ideas of reuse and the information commons were pioneered
centuries earlier, in science. When someone publishes a scientific
discovery—say, Einstein’s famous paper containing the formula E = mc?
—other scientists can reuse that result in their own papers, simply citing
the original derivation. This allows scientists to build on the earlier work
without having to repeat that work. The citation both credits the original
discoverer, and provides a link in a chain of evidence. If someone wants
to know why E = mc?, they merely need follow the citation to Einstein’s
original paper. The result is that, as in modern programming, a great
scientist isn’t merely a person capable of enormously penetrating
insights into nature, but one who also has a mastery of the information
commons—aady published scientific knowledge—and an ability to build
on that knowledge. Science is, in this sense, one big collaboration, built
on the information commons.

Science’s citation-based information commons is powerful, but
cumbersome and slow when contrasted with, say, the rapid-fire pattern of
reuse in a project such as Wikipedia or Linux. A scientist who used the
Wikipedia and Linux pattern—reusing someone else’s text word for
word, but making a few improvements here and there—would likely
receive an indignant note (or worse) from the original author. Yet such
improvements are the lifeblood of many online collaborations, enabling
extremely rapid iterative improvement, with people focused solely on
moving forward, not on rehashing what is already known. A moderately
active Wikipedia article may be modified 20 or 30 times by a dozen
different people in a week. To get the same cumulative buildup of ideas
in many areas of science might take years. Projects such as the Polymath
Project speed up the cumulative building process of conventional
science, creating a shared space where scientists can rapidly build upon



one another’s ideas. Citation is perhaps the most powerful technique for
building an information commons that could be created with
seventeenth-century technology. But as the Polymath Project shows, and
as we’ll explore in more detail later, modern technologies now enable a
better way.

The MathWorks Competition

In 1998, a software company called MathWorks began running a
twice-annual computer programming contest that is open to anyone in
the world. For each contest MathWorks poses an open-ended
programming problem. To give you the flavor of the contest, consider
the problem used in the first contest, in 1998, a problem called the CD
packing problem: to write a program which, when given a long list of
songs, picks out a sublist that comes as close as possible to filling the 74-
minute length of a CD. For example, your program might be asked to
pick out songs from Pink Floyd’s back catalog. You run your program,
and it finds a list of songs from the catalog that leaves just 35 seconds of
extra space on the CD. But if your program had a better way of selecting
songs, you might find yourself with only 15 seconds left on the CD.

The CD packing problem seems artificial. Not too many people have a
need to burn CDs that are as close to filled as possible. Despite this, the
problem is exactly the kind of challenge many programmers enjoy. It’s a
simple problem that’s easily understood, but can be attacked in many
different ways. Like all the MathWorks competitions, the original
competition was very popular, attracting more than 100 contestants from
all over the world.

Every program entered in a MathWorks contest is given a score
reflecting both how quickly the program runs (faster programs get better
scores) and how well it solves the problem. In the case of CD packing,
programs that came closer to filling the CD were given better scores.
Contestants can submit programs at any time during the week-long
competition, and are welcome to submit multiple entries, or multiple
versions of the same entry. Entries are automatically scored as soon as
they’re submitted, and the scores immediately placed on a leaderboard.
(We’ll come back to how the automated scoring is done shortly.)



Acclaim goes to people near the top of the leaderboard, however briefly,
and so instead of waiting until the end of the week to submit their
entries, people submit entriesontoughout the entire week. The contest’s
overall winner is the person at the top of the leaderboard at the end of the
competition.

What makes the MathWorks competition special is that every time
someone submits an entry, the code for their program is immediately
made available for other people to download and reuse. That is, anyone
can come in, “steal” someone else’s code, change it to get an
improvement, and then resubmit it as their own, possibly vaulting over
the other person on the leaderboard. This ability to reuse other people’s
code has spectacular consequences. The leading programs are constantly
being tweaked by very minor changes, often changing just a single line
of code in an earlier entry. Changes come fast and furious, and some
contestants become addicted, driven by the instant feedback and the
feeling they are just a single idea away from the top of the leaderboard.
One contestant has written:

I started to become “obsessed.” At home, although I am a father
of three children, my full-time job was working on the contest. |
worked maybe 10 hours after work each day. On Thursday it was
clear that I wasn’t going to be able to work seriously (for my job),
so I took a day off on Friday.

It’s similar to the rapid cycle of feedback that makes computer games
addictive. You can always have one more shot at making a tiny
improvement. It’s arguable whether that’s always a good thing—the
contestant quoted sounds like he needs to take a holiday from his
computer—but this relentless focus also produces amazing results.

The progress of the contest is vividly illustrated by the graph in figure
4.2. The horizontal axis is time, while the vertical axis is the score: for
the CD packing problem, lower scores are better. Each dot on the graph
represents a competition entry. The scores dropped so dramatically
during the contest that the vertical axis has been rescaled—scores at the
top are hundreds of times higher than scores at the bottom. The solid line
marks the best score at any given time. As you can see, there are
occasional big steps in the line, indicating breakthrough ideas that
substantially improve the best score. After such a breakthrough, there is
usually a period in which people make many minor tweaks to the leading



entry, finding small improvements that further optimize the program, and

leave them with the best score.
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Figure 4.2. The progress of scores in the MathWorks programming
competition. Lower scores are better. Credit: Copyright 2011 The
MathWorks, Inc. Used by permission. Thanks to Ned Gulley for

providing the figure.

The difference between the best early entries and the final winner is
dramatic. In the CD packing contest, the best early submissions ran
quickly, but left six minutes of space on the CD unused. The winning
program ran approximately as fast, but left just 20 seconds unused, a
nearly 20-fold improvement. It made use of contributions from at least
nine people, over dozens of separate submissions. Although it’s a
competition, the MathWorks contest thus functions in many ways as a
large-scale collaboration. The organizer of the contest, Ned Gulley, said
of the winning program: “no single person on the planet could have
written such an oimize thalgorithm. Yet it appeared at the end of the
contest, sculpted out of thin air by people from around the world, most of
whom had never met before.” This was not a fluke. The CD packing
contest was the first of more than twenty MathWorks competitions that
have been held to date. Each contest sees the same gradual emergence of



a program whose construction is arguably beyond the ability of any of
the individual competitors.

Microcontribution

The Mathworks competition vividly illustrates a pattern that can be
used to scale online collaboration: microcontribution. The most common
type of entry in the MathWorks competition is an entry that changes just
a single line of code in some previous entry. That’s right, someone comes
in and changes just one line of code in an earlier entry—very possibly
someone else’s entry!—and resubmits it as their own. The next most
common type of entry changes just two lines. And so on. The result is
that even though people are competing, the evolution of the leading
entries looks almost like a conversation, with lots of back and forth, as
the baton of leadership passes from one participant to another. It’s a
creative exchange of ideas that drives gradual improvement over time,
with different people contributing as best they can.

The same pattern of microcontribution is used in many online
collaborations. In Wikipedia the most common edit to an article changes
just a single line of that article. In Linux the most common contributions
change just a single line of code. A study by two scientists at the
software company SAP, Oliver Arafat and Dirk Riehle, showed that this
pattern is quite general: in most open source software projects the most
common change is to just a single line of code, the second most common
change is to two lines, and so on. In the Polymath Project, project leader
Tim Gowers asked participants to share just a single idea in each
contribution, and to resist the temptation to go off and develop ideas
extensively on their own.

Microcontribution lowers the barrier to contribution, encouraging
more people to become involved, and also increasing the range of ideas
contributed by any particular person. As a consequence it increases the
range of expertise available to the collaboration. Recall Yasha, the
member of the World Team who contributed the crucial move number
26. Yasha would have been lost playing Kasparov on his own. But it was
very helpful, perhaps vital, for the World Team to have access to Yasha’s
small contribution. Small contributions spark ideas and insight, as people



share ideas that they couldn’t develop alone, but that can inspire others.
If a participant in the Polymath Project or the MathWorks competition
was stuck for ideas, they only needed to wait a few hours, watching for
new 1deas to stimulate and challenge them. Or they could dig into the
archives, looking for fresh stimulation from old ideas. Microcontribution
thus helps build a vibrant community, a sense that something is afoot,
that progress is being made, that even when you, personally, are stymied,
other people are moving things forward. Microcontribution is a powerful
pattern of collaboration, in short, because the small contributions help
the collaboration rapidly explore a much broader range of ideas than
would otherwise be the case.

Scores as Signals to Coordinate Expert
Attention

I said earlier that entries in the MathWorks competitionre scored
automatically as soon as they’re submitted, but I glossed over how that’s
done. Imagine you’re one of the competition organizers, and one of the
competitors has just submitted their program. How should you score it?
The obvious thing to do (and the way it’s actually done) is to run the
program on a few test inputs. You might try it out on (say) three test
inputs: the Beatles catalog, a collection of jazz pieces, and a collection of
dance music. So on the first run the program would attempt to fill a CD
with songs chosen from the Beatles catalog, on the second run it would
use songs from the jazz collection, and on the third run songs from the
dance collection. You’d then give the program a score determined both
by how quickly the program runs and how well it fills up the entire CD
on each of the three test inputs. Of course, there’s no need for this to be
done manually by an organizer. It can all be done automatically as soon
as entries are submitted, so the score can be computed immediately. The
only caveat is that for this to work the organizers need to keep the test
inputs secret—if competitors knew, for example, that their program
would be used on the Beatles catalog, they could tailor it specifically to
the Beatles catalog, defeating the point of the competition. But provided



the organizers are careful to keep the test inputs secret, they can
automatically score entries as soon as they’re submitted.

Automated scoring is important because the scores help participants
focus their attention where it will do the most good. If someone changes
a program and causes a big jump (or even a small improvement) in the
score, other people notice and check to find out what’s been changed:
maybe that person has a great new idea. The automated scoring thus
makes it easy for programmers to keep tabs on each others’ best ideas—
even if the number of participants is very large—and to spot
opportunities to use their own expertise to make further improvements,
and so leapfrog over one another. Some of the programmers, for
example, are experts on the detailed ins-and-outs of the programming
language (called MATLAB) used in the competition. They watch other
people’s programs carefully, and use their knowledge of MATLAB to
make tiny optimizations, often changing just one or two lines of
MATLAB code to be more efficient, and so shaving a fraction of a
millisecond off the running time. Other competitors specialize in other
ways. Some scour the scientific literature looking for inspiration. Others
brainstorm completely new approaches. And some work on hybridizing
existing approaches. Amidst all these differing approaches, the
automated scoring plays a role similar to prices in a market, providing
information that can be used to inform decision making by contest
participants. While it’s impractical to conduct a conversation involving
the more than 100 people who entered in the MathWorks competition—
no one has time to pay attention to more than 100 separate voices—the
score helps people make good decisions about where to focus their
attention, and so fuels rapid improvement.

The MathWorks score is not perfect as a way of coordinating
attention. Because the same scoring information is provided to everyone,
it leads competitors to concentrate their attention in similar ways. For
example, if someone jumps to the top of the leaderboard, then many
participants will immediately shift their attention to that entry. Of course,
some concentration of attention is good, but if everyone follows the same
lead, then the group as a whole may neglect promising directions for
exploration. You could imagine more complex signaling mechanisms
that would spread attention more widely, and lead to a better allocation
of expertise. For instance, people wh expertise in optimizing MATLAB
code might be directed to programs whose gross structure was changing
rapidly, but whose fine detail had not yet been optimized. Or perhaps
there could be some way of detecting clusters of programs that make use



of similar ideas. Contestants who enjoyed hybridizing different
approaches could use this information to help them pick out the best
programs in each cluster, and attempt to hybridize those.

These limitations aside, the MathWorks score does a great job of
helping coordinate attention, and thus of helping the MathWorks
collaboration scale. As a way of directing attention it works much more
effectively than, for example, any mechanism available in the Polymath
Project, which relied on the acumen of individuals to assess which
contributions were worth following up on. It could take hours or days for
the polymaths to identify the best new ideas. That’s fast, especially when
compared to the usual pace of scientific research, but slow compared to
the immediacy of the MathWorks score. The situation in Kasparov
versus the World was similar to the Polymath Project, although tools
such as Krush’s analysis tree helped coordinate attention. The better the
architecture of attention is at directing attention in this way, the more
collective intelligence is amplified.

Converting Individual Insight into Collective
Insight

In addition to coordinating attention, the MathWorks score also
served the important purpose of helping turn the insights of individual
participants into collective insights held by the entire group. Every time
someone had an idea that improved a program, this was reflected in their
score, making the value of their new idea immediately apparent to all
participants. For collaboration to succeed, there must be some way of
converting individual insight into collective insight. In other words, the
collaboration needs to know what the collaboration knows.

Kasparov versus the World shows what happens when a collaboration
only imperfectly converts individual insight into collective insight. As
we’ve seen, the World Team relied on Irina Krush and her colleagues to
identify and publicize the best ideas of the World Team. Without Krush’s
skill at evaluating and comparing analyses, the World Team would likely
have done far worse at aggregating the best ideas. Of course, even
though Krush and her colleagues put in a mighty effort, their manual



approach wasn’t as fast or objective as the automated scoring in the
MathWorks competition. As a result, much of the available expertise on
the World Team was squandered. Many experienced chess players
participated on the World Team, and while some enjoyed the experience,
others felt alienated, believing their insights were lost in the general
noise of discussion. Years after the game, one participant wrote in an
online forum:

If anything in my life that I’ve participated in that I could label
as a perfect example of how a community should NOT solve a
problem, it was the KvW match. (which I particpated in heavily and
am a master (fide [chess rating] 2276)).

Such disaffection occurred because Krush and a few colleagues were
manually integrating the best ideas of thousands of people. Their efforts
were remarkable, but of course they could only do the job imperfectly.
This caused occasional frustration on the World Team, and almost
certainly some missed opportunities. This 1s a general ule: the more
effectively a collaboration can convert individual insight into collective
insight, the more effective the collaboration will be.

In fact, the World Team’s system for converting individual insight into
collective insight broke down badly at a crucial point in the game. As I
mentioned earlier, until move 51 the game had seesawed back and forth
between Kasparov and the World, with neither side gaining a decisive
advantage. By move 51, Kasparov was in a slightly stronger position,
and the World Team was fighting for a draw. Unfortunately, at move 51 a
member of the World Team by the name of Jose Unodos claimed to be
able to break Microsoft’s voting system, and to have stuffed the ballot in
favor of a move that he personally liked, but that was not considered a
strong move by Krush and most of the other top World Team players.
Jose Unodos’s preferred move won the vote, the first time since move 9
that Krush’s recommendation wasn’t played by the World Team. The
event helped tip the balance of the game in favor of Kasparov, and
damaged the World Team’s morale. Eleven moves later, Kasparov won,
in a sad end to one of the great games in the history of chess. When a
group’s ways of converting individual insight into collective insight
break down, collective intelligence no longer functions. In the next
chapter we’ll see that in some fields such breakdowns impose
fundamental limits on collective intelligence.



CHAPTERSS



The Limits and the Potential of Collective
Intelligence

Collective intelligence is not a problem-solving panacea. In this
chapter we’ll identify a fundamental criterion that divides problems
where collective intelligence can be applied from problems where it
cannot. We’ll then use that criterion to understand why scientific
problems are especially well suited for attack by collective intelligence.
To understand the criterion, let’s first turn to an experiment done in 1985
by the psychologists Garold Stasser and William Titus. What Stasser and
Titus showed is that groups discussing a certain type of problem—a
political decision—often do surprisingly badly at using all the
information they possess. This perhaps doesn’t sound so surprising: after
all, everyday political discussion isn’t always terribly informative. But
what Stasser and Titus showed went much further: group discussion
sometimes actively makes people’s political decisions worse than they
would have been if they had made those decisions individually.

Stasser and Titus began by creating written profiles of three fictional
candidates for president of the student government at Miami University,
where Stasser was a faculty member. The profiles contained information
about the candidates’ policies on issues of interest to students—dorm
visitation hours, local drinking ordinances, and so on. Stasser and Titus
deliberately constructed the three profiles so that one of the candidates
was clearly more desirable than the other two. They did this by first
surveying students to figure out which traits students found desirable,
and then constructing the profiles accordingly. We’ll give this extra-
desirable candidate a name: we’ll call them “Best.”

In the first version of the experiment, each student received complete
profiles of all three candidates, and was asked to decide who their
preferrcandidate was. Not surprisingly, 67 percent of the students chose
Best. Stasser and Titus then divided the students into small groups of
four people each, and asked the groups to discuss which candidate



should be president. At the end of the discussion the students were again
asked for their preferred candidate. Support for Best increased to 85
percent.

So far, no surprises. But Stasser and Titus also did a second version of
the experiment. This time they altered the profiles so that each student
received only partial information about the three candidates: they
removed some of the positive information about Best—things students
could be expected to like—and they also removed some of the negative
information about one of the undesirable candidates. In fact, any single
partial profile now suggested that one of the undesirable candidates was
actually better than Best. Not surprisingly, when asked to choose a
candidate on the basis of these partial profiles, 61 percent of the students
preferred the undesirable candidate, while only 25 percent preferred
Best. After this, Stasser and Titus again divided the students into small
groups of four, and asked the groups to discuss which candidate should
be president. But here’s the clever bit: when Stasser and Titus were
constructing the partial profiles, they were careful to remove different
information from different profiles, so that each group of students would
still have al/l the information about all three candidates. Thus each group
still had all the information they needed to identify Best as the truly best
candidate. Note that the students were warned in advance that not
everyone in their group necessarily had the same information about all
three candidates.

Now, in this second version of the experiment you’d think Best’s
percentage would increase after the group discussion, as people shared
what they knew and realized that Best was truly the better candidate. But
that’s not what happened. In fact, after the discussion it was the
undesirable candidate whose percentage increased, from 61 percent to 75
percent. Best’s percentage actually decreased, from 25 percent to 20
percent. The groups weren’t so much sharing information as they were
reinforcing the students’ preconceived ideas. To put it another way,
group discussion didn’t make the groups’ decisions better, it made them
worse. It was a case of collective stupidity, not collective intelligence.

Whats was going on? We’ve seen many examples showing how
groups can use their collective intelligence to perform better than any
individual in the group. Yet the Stasser-Titus experiment shows that
discussion sometimes makes groups do worse than their average
member. Furthermore, the Stasser-Titus experiment is part of a much
broader set of findings in group psychology that show that groups—even



small groups, or groups of experts—often have trouble taking advantage
of their collective knowledge.

For example, in a 1989 follow-up to the original Stasser-Titus
experiment, the group discussions were recorded so the experimenters
could better understand how the groups came to their decisions. What
they found was that instead of exploring all the available information, the
groups spent most of their time discussing information they had in
common. So, for example, if several people all knew that Best held an
unpopular position on (say) dorm room visitation, there was likely to be
a relatively lengthy discussion of that fact, and the information was
likely to be mentioned again latin the discussion. But when someone in
the group had a unique piece of information about a candidate, a piece of
information that only they knew, the discussion of that information was
usually perfunctory. That mattered, because in the original Stasser-Titus
experiment, negative information about Best was often held in common
by several members of the group, while positive information was often
held by only a single member.

In 1996 another follow-up experiment was done, this time in a
teaching hospital, asking groups to make medical diagnoses on the basis
of video clips of patient interviews. Again, the information was partial:
each person in the group saw only part of the video interview. The
groups making the decisions included three people of different statuses a
medical resident, an intern, and a student. Alarmingly, but perhaps not
surprisingly, the groups paid much more attention to unique information
held by the high-status medical resident. Unique information held by the
interns and students was much more likely to be ignored.

These and many other studies paint a bleak picture for collective
intelligence. They show that groups often don’t do a good job of taking
advantage of their collective knowledge. Instead, they focus on
knowledge they hold in common, they focus on knowledge held by high-
status members of the group, and they often ignore the knowledge of
low-status members of the group. Because of this, they don’t manage to
convert individual insight into collective insight shared by the group.
And that’s bad news if you’re trying to use collective intelligence.

The Limits to Collective Intelligence



Why are projects such as the Polymath Project, Kasparov versus the
World, and the MathWorks competition so successful, while the groups
in the Stasser-Titus and related experiments perform so poorly? To put it
more precisely, why were the groups in the successful projects able to
convert their best individual insights into collective insight, while the
groups in the Stasser-Titus and related experiments failed to make this
conversion? Was the difference due merely to differences in the
processes used in the respective cases? Or is there some more
fundamental difference, a difference that can’t be solved by an improved
process, perhaps due to the nature of the problems under discussion?

To answer these questions, I want you to consider a little brain-teaser.
I’11 give a verbal description of the puzzle, but the puzzle is rather visual,
and you may find it illuminating to consult the pictorial explanation
given in the picture and caption on the next page. You’re given an empty
eight-by-eight chessboard, and asked to cover it with one-by-two
dominoes, so that only two squares remain uncovered: the square in the
bottom left, and the square in the top right. Can you do this? If so, how?
If not, why not? You’re not allowed to stack dominoes, or break
dominoes, or leave dominoes hanging off the edge of the board—
everything in the puzzle statement is to be interpreted in the usual way.
To further simplify things, we’ll also require that each domino covers
two adjacent squares on the board—no obliquely placed dominoes are
allowed.

Most people don’t find this an easy puzzle. But it’s worth struggling
with it for a few minutes before reading on. If you do, and you try laying
out imaginary (or real) dominoes on a chessboar If you dou’ll discover
that no matter how hard you try, you can’t quite do it. It’s as though
there’s an unseen obstruction that is somehow preventing you from
succeeding. In fact, there is no way of covering the board in the way
requested. Here’s why. The key is to notice that if you put a domino
down on the board, no matter where you put it, it will cover a total of one
black square and one white square. So if you put two dominoes down,
there will be a total of two black squares covered, and two white squares.
Three dominoes means three black squares covered and three white
squares covered. And so on. No matter how many dominoes you put
down, the total amount of black and white covered will be the same. But
notice that both the bottom left and top right squares on the chessboard
are black. So to reach a situation where they are the only squares



uncovered, you need to somehow cover 32 white squares and 30 black
squares. That’s an unequal number, so there’s no way it is possible.
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Figure 5.1. The puzzle starts with an empty -eight-by-eight
chessboard, as shown on the left. You’re asked if it’s possible to cover
the chessboard with one-by-two dominoes, so that only the bottom left
and top right squares remain uncovered. On the right, I’ve shown a failed
attempt to do this, which leaves two extra squares in the top right corner
uncovered.

Although most people find it hard to solve this puzzle, when the
solution is explained they quickly say, “Aha, I see it!” It’s much easier to
recognize the insight that solves the problem than it is to have that
insight. Put slightly differently, there’s a gap between the difficulty of
recognizing the insight and the difficulty of having the insight in the first
place. A similar gap is present in examples such as the Polymath Project,
Kasparov versus the World, and the MathWorks competition. Consider
the MathWorks competition. It requires tremendous ingenuity to write
programs that quickly pack CDs nearly full of songs. But, as we’ve seen,
it’s easy to recognize when someone has written a good program: simply
run the program on a few test inputs, and check that it runs fast, and
leaves little space left over on the CD. It’s that gap between the difficulty
of writing programs and the ease of evaluating them that fuels collective
progress in the MathWorks competition. In chess, recognizing valuable
insight isn’t quite as straightforward, but a competent chess player such
as Krush can recognize and understand an exceptionally insightful
analysis of a particular position, even if she couldn’t have come up with
the analysis on her own. The best analyses may even stimulate the same
feeling of “Aha, how clever!” as in the domino puzzle. Krush can’t play



consistently at Kasparov’s level, but she’s good enough to recognize
when other people are (momentarily, at least) playing at that level, and to
understand their analyses. And in the Polymath Project, participants
could recognize when others had mathematical insights that exceeded
their own, and could incorporate those insights into their collective
knowledge. Again, it’s that “Aha!” feeling stimulated by a clever insight.
Each project thus has used this gap between our ability to have and to
recognize useful insights, in order to convert individual insight into
collective insight.

The problem in the Stasser-Titus experiments is that the small group
discussions did not reliably convert individual insight into collective
insight. Intellectually, many of the students participating the experiments
would no doubt have agreed that the way to go was to systematically
pool all their information, and then to make a decision based on the
combined profiles so constructed. But in practice they didn’t do that.
And, given the context, this is not surprising. In everyday political
discussion, most of us don’t assess politicians by building up a complete
picture of their positions. We’re too busy figuring out how their positions
relate to our values and our interests.

Suppose, however, that the groups in the Stasser-Titus experiment
actually had begun their discussion by systematically pooling all their
information. That experiment has never, to my knowledge, been done,
but I think we can be sure it would dramatically change the outcome. So
the problem in the Stasser-Titus groups was in part a failure of process;
an improved process would result in dramatically better outcomes. But it
wasn’t solely a failure of process. Even if the groups had systematically
shared information, different students would still have had unresolvable
differences of opinion. If one student loves to drink and party, while
another strongly opposes drinking on religious grounds, then they may
never agree on political choices, no matter how good the process that is
being used.

This points the way to a fundamental requirement that must be met if
we’re to amplify collective intelligence: participants must share a body
of knowledge and techniques. It’s that body of knowledge and
techniques that they use to collaborate. When this shared body exists,
we’ll call it a shared praxis, after the word praxis, meaning the practical
application of knowledge. Whether a shared praxis is available
determines whether collective intelligence can be scaled up, or whether it
cannot be.



As an example of a shared praxis, imagine a large group is working
together on the domino problem. As soon as any single person in the
group finds that the domino problem is impossible to solve, they can
quickly convince the others, because each step in their reasoning is so
self-evidently correct: we all share the same basic reasoning skills.
That’s an example of a shared praxis. In a similar way, there’s a shared
praxis for work in mathematics—all the standard methods of
mathematical reasoning, and norms about mathematical discourse—and
that’s why participants in the Polymath Project could recognize and
agree on when mathematical progress was being made. Also similarly,
the score in the MathWorks competition implicitly defined a shared
praxis: any change to a program that improved the score was understood
by participants to be progress. In chess, the shared praxis isn’t as strong
as it is in mathematics and computer programming: even top chess
players sometimes disagree about the value of different analyses.
Nonetheless, there is a large body of chess knowledge that is broadly
agreed upon by strong players, and this shared knowledge means that the
stronger players on the World Team could usually agree on which
analyses were best.

Those are all examples of problems where there is a shared praxis. But
for many problems there is no shared praxis. For instance, as we’ve seen,
there is no strong shared praxis available in politics. People can easily
disagree over basic values. And if a group doesn’t have such a shared
praxis, then disagreements will arise that can’t be resolved. Once an
unresolvable disagreement arises, the community will begin to fragment
around that disagreement, limiting the ability to scale up collaboration.
Now, for one-oproblems—say, the problem of guessing the weight of an
ox at an English country fair (see page 7)—that maybe doesn’t much
matter. But for working together through multiple stages to solve a
problem, such fragmentation imposes fundamental limits on the scale of
collaboration.

Politics 1s just one of many fields that lack a strong shared praxis. The
same is also true in many of the fine arts, where assessing creative works
is often highly contentious. For instance, to decide which of two
paintings is better, we make use of our own aesthetic standards,
standards that may be quite different from those held by other people.
Similarly, we may reasonably disagree over which of two musical
compositions is better. This isn’t to say that there is no notion
whatsoever of an objective standard in the arts. Pretty much everyone
agrees that the Beatles are better than some random boy band. But in



comparing the Beatles to Bach, reasonable people may disagree. In
making that statement I’ve no doubt offended music snobs all over the
world. But the point is that I’ve offended both the classical music snobs,
who can’t believe the Beatles begin to compare to Bach, and also the pop
music snobs, who believe that Bach belongs to a tradition that has since
been surpassed. When such traditions coexist, it is extremely difficult for
people in the two traditions to collaborate, because they have no basis to
agree on when they’re making shared progress. This isn’t a negative
judgment about such fields—great musicians, painters, and politicians all
operate near the limits of human ability—but it is an important limitation
on when collective intelligence may be used.

It’s not just politics and the fine arts that don’t have a strong shared
praxis. Many academic fields lack one as well. Think of criticism of
English literature. Critics are not going to one day put down their quills
and arrive at a common understanding of Shakespeare. Indeed, arriving
at such a common understanding isn’t the point. In such fields a plurality
of points of view is a feature, not a bug, and a new way of understanding
Shakespeare is to be celebrated. But this same plurality of points of view
makes it difficult to recognize and integrate the best insights from a large
group of people. Any such attempt at collaboration inevitably gets
bogged down in discussions about basic values, and questions about
what makes a contribution worthwhile. In such fields, agreement doesn’t
scale, and that severely limits our ability to convert individual insight
into collective insight, and so prevents application of collective
intelligence.

Some fields sit near the cusp dividing fields where it’s feasible to scale
collective intelligence and those where it is not. In economics, for
example, there are many powerful methods of reasoning that are agreed
upon by most economists: an understanding of how trade can make
everyone better off, the idea that printing more money usually causes
inflation, and so on. But economists don ¢ agree on some of the most
fundamental questions of economics. As the old joke goes, if you put
five economists in a room, they’ll give you six wildly differing opinions.
US President Harry Truman is supposed to have asked for a one-armed
economist, one who couldn’t say “On the other hand.” So while there is
a shared praxis in economics, it’s not as strong as the shared praxis in
fields such as mathematics, computer programming, and chess. As a
result there are many questions in economics that can’t be attacked by
the methods of collective intelligence. It’s only in a few parts of
conomics, such as the study of some mathematical models of finance and



the economy, where a strong shared praxis is available. It’s in those parts
of economics where collective intelligence can be scaled.

The availability of a shared praxis isn’t the only challenge in applying
collective intelligence. There are many other practical problems. An
example is groupthink, where members of a group may be more
interested in getting along with one another than in critically evaluating
ideas. Or groups may become echo chambers, with group members
merely reinforcing each others’ existing opinions. In some groups, basic
norms of civil behavior breakdown. This sort of breakdown has
destroyed many open source software collaborations, and bedevils many
badly designed forums on the web, which may become havens for
internet trolls, and other antisocial behavior. The projects we’ve
discussed have overcome these and similar problems: some have
succeeded with flying colors (the Polymath Project), while others just
barely succeeded (World Team deliberations sometimes teetered on the
edge of breakdown because of lack of civility). Similar problems also
afflict offline groups, and much has been written about the problems and
how to overcome them—including books such as James Surowiecki’s
The Wisdom of Crowds, Cass Sunstein’s Infotopia, and many other books
about business and organizational behavior. While these practical
problems are important, they can often be solved with good process. But
no matter how good the process, there remains a fundamental dividing
line: whether a shared praxis is available. In fields where a shared praxis
is available we can scale collective intelligence, and get major qualitative
improvements in problem-solving behavior, such as designed serendipity
and conversational critical mass. For fields without a shared praxis,
online tools don’t give us the same qualitative shift.

The Shared Praxes of Science

Science 1s well suited for collective intelligence. Most fields of
science have a large repository of powerful techniques shared by the
scientists working in that field. There are widely agreed standards for
what it means for an argument or analysis or experimental procedure to
be correct. This was illustrated vividly by the Polymath Project, where
discussion was carried out in a remarkably civil tone. On those rare



occasions where disagreement occurred, it was usually because someone
had made an outright error in reasoning. Someone else would point out
the error, without rancor, whereupon the originator would immediately
acknowledge their mistake. This is not to say that participants never
engaged in speculation, but they carefully marked their speculation as
such, and didn’t present it as incontrovertible fact. On nearly all crucial
issues the participants rapidly agreed on when a line of argument was
right and when it was wrong, and on when an idea was promising and
when it was not. It was that rapid agreement which made it possible to
scale up collaboration.

As an illustration of how strongly held these standards are in science,
consider the work of the young Albert Einstein, not the scientific icon we
know of today, but as an unknown 26-year-old clerk working in the
Swiss patent office, unable to find a job as a professional physicist. From
that position of obscurity, in 1905 Einstein published his famous papers
on special relativity, radically changing our notions of space, time,
energy, and mass. Other scientists had partially anticipated Einstein’s
conclusions, but none so boldly and forcefully laid out the full
consequence Scspecial relativity. Einstein’s proposals were astounding,
yet his arguments were so compelling that his work was published in one
of the leading physics journals of his day, and was rapidly accepted by
most leading physicists. How remarkable that an outsider, a virtual
unknown, could come in to challenge many of our most fundamental
beliefs about how the universe works. And, in no time at all, the
community of physicists essentially said, “Yeah, you’re right.”

As another example, consider the discovery of the structure of DNA.
This discovery was made by James Watson and Francis Crick, using data
due in part to Rosalind Franklin. All three were young, unheralded
scientists: Watson was 24, and Crick was 36, reestablishing himself after
a brief career in physics and work in the British Admiralty during World
War II. Franklin was 32. Racing them to the discovery was the world’s
leading chemist, Linus Pauling. More than a decade earlier, the brilliant
Pauling had made a series of discoveries that would eventually win him a
Nobel Prize in Chemistry. If he could solve the structure of DNA,
another prize would surely follow. At one point during the race he gave
Watson and Crick a tremendous scare, announcing that he’d found the
structure. But Watson and Crick spoke with Pauling’s son, Peter Pauling,
who showed them Pauling senior’s proposed structure for DNA. To their
astonishment, they quickly realized that Pauling was wrong: the world’s
greatest chemist had made a simple mistake in basic chemistry, a mistake



his own textbooks should have alerted him to. Watson and Crick went
back to their work with renewed intensity, and soon after found the right
structure. When that happened it didn’t matter that Pauling was world
famous while Watson, Crick, and Franklin were unknowns. The
scientific community rejected Pauling’s work, and hailed the double
helix as one of the scientific discoveries of the century.

The examples of Einstein and of Watson, Crick, and Franklin illustrate
the strength of the shared praxis in science. To an extent unusual in many
parts of life, in science it’s often the person with the best evidence and
best arguments who wins out, and not the person with the biggest
reputation and the most power. Pauling may have been widely
acknowledged as the world’s leading chemist, but other chemists could
see just as surely as Watson and Crick that Pauling’s structure was
simply wrong. This strong shared praxis makes science well suited to
collective intelligence.

This strong shared praxis doesn’t mean that science is a clean and
simple process. The actual day-to-day process of doing science is messy
and speculative and filled with error and argument. The scientist Richard
Feynman was so full of irrepressible brainwaves and “great” ideas, most
of which later proved to be wrong, that according to his biographer
James Gleick his cannier colleagues developed a rule of thumb: “If
Feynman says it three times, it’s right.” The same could be said for many
scientists. Often a scientist begins an investigation with little more than a
whiff of an idea, a suspicion that some hypothesis is true. They sketch
out a way of testing it, often vaguely at first, gradually filling in more
and more details. Experiments often need to be performed many times,
with the experimental design gradually changed and improved, as the
scientist understands better what evidence is required in order to be
convincing. All this is a slow process that involves lots of speculation
and argument and false starts, as the scientist gradually moves to more
and more robust arguments and evidence. The end goal, though, is a set
of st argents and evidence that adheres to the shared praxis of the field.
And that is quite unlike a discussion of Bach-versus-the-Beatles, or a
political discussion, or a discussion of Shakespeare, where in the end
there may remain a fundamental division over basic values. Of course,
scientists do still sometimes publish wrong or mistaken or unconvincing
papers. But even when a scientist publishes such a result, other scientists
can go back and repeat the experiments to find flaws, or point out
shortcomings in the arguments. In short, they can retest the results
against the shared praxis of the field, and find them wanting. It’s this



ability to be wrong in a clear-cut way that enables forward progress. In
this sense science is, as I said earlier, already one big collaboration, held
together by common standards of evidence and reasoning.

Are there parts of science without a shared praxis, parts more like
economics, say, where the problems are so challenging that the field is
still a proto-science, with shared knowledge and techniques only starting
to emerge? As an example, one of the big open problems of physics is
the problem of finding a quantum theory of gravity—a single theory that
unifies both quantum mechanics and Einstein’s theory of gravity. It’s one
of the toughest problems of physics, a problem that has defeated the best
minds for decades. In the 1980s an approach to the problem known as
string theory rose to prominence, and gradually came to dominate work
on quantum gravity. At the same time, a much smaller number of
physicists continued to pursue other approaches to quantum gravity. In
recent years a debate called by some the “string wars” has been waged
between advocates of the different approaches. Many physicists claim
string theory is the only reasonable approach to quantum gravity. Others,
including Stephen Hawking, Roger Penrose, and Lee Smolin, believe
different approaches are worth pursuing. Remarkably, some prominent
string theorists dismiss the non-string theorists not just as wrong, but as
misguided, or even as fools. When such a fundamental division occurs, it
is nearly impossible for large groups to collaborate across that division.
Collective intelligence can only be applied within the respective tribes,
where there is a shared praxis. And such collaborations need to be
guarded carefully against disruption by the rival tribe.

The situation in quantum gravity is unusual. In most areas of science,
scientists can compare two competing explanations of a phenomenon to
an experiment, and realize that one explanation is right (or, at least, not
ruled out by the experiment), and the other is wrong. Or a scientist can
point out a hole in another’s experimental procedure, and everyone will
agree that, yes, that really is a hole, it doesn’t come up to the expected
standard. But in quantum gravity the phenomena being studied are so
remote that we don’t yet know how to do experiments—it’s still all
theory. And developing the basic theory is so challenging that picking
out starting assumptions has become to some extent a matter of personal
taste, in a manner similar to the fine arts. It’s these highly unusual
conditions that have prevented the development of a shared praxis. By
contrast, in most other fields of science, there is a strongly held shared
praxis. And so science gives us a marvelous opportunity to amplify our
collective intelligence.



Using Collective Intelligence in Science

In part 2 of this book, we’ve seen how online tools can be used to
amplify collective intelligence, both making groups sstring r and making
smarter groups. As we come to the end of part 1, let’s use those ideas to
imagine some of the ways online tools could be used to amplify
collective intelligence in science. We’ll take a personal point of view,
trying to imagine a few of the ways these tools might impact the day-to-
day life of an individual scientist. In the chapters to come we’ll see how
some of these dreams are being realized and even exceeded today. We’ll
also see how other parts of these dreams are blocked by current social
practices within science—and how that can be changed.

Imagine it’s a few years in the future, and you’re a theoretical
physicist working at the California Institute of Technology (Caltech), in
Pasadena. Each morning you begin your work by sitting down at your
computer, which presents to you a list of ten requests for your assistance,
a list that’s been distilled especially for you from millions of such
requests filed overnight by scientists around the world. Out of all those
requests, these are the problems where you are likely to have maximal
comparative advantage. Today, one of the requests immediately catches
your eye. A materials scientist in Budapest, Hungary, has been working
on a project to develop a new type of crystal. During the project an
unanticipated difficulty has come up involving a very specialized type of
problem: figuring out the behavior of particles as they hop around
randomly (“diffuse”) on a triangular latticework. Unfortunately for the
materials scientist, diffusion is a subject they don’t know much about.
You, in turn, don’t know much about crystals, but you are an expert on
the mathematics of diffusion, and, in fact, you’ve previously solved
several research problems similar to the problem puzzling the materials
scientist. After mulling over the diffusion problem for a few minutes,
you’re sure that the problem will fall easily to mathematical techniques
you know well, but which the materials scientist probably doesn’t know
at all.

You message the materials scientist with an outline of a solution to
their problem. Over the next few days you communicate back and forth,
jointly fleshing out a solution, filling in many details, and translating
your mathematical ideas into the language of materials science. Much
work on the original project remains to be done, but a critical bottleneck



has been overcome. Your reward is a happy collaborator, eventual
coauthorship on a paper, and the pleasure of learning a little about the
physics of crystals and how it relates to your expertise in diffusion. Your
collaborator’s reward is to save hundreds of hours they otherwise would
have spent becoming expert enough to solve the diffusion problem. The
community as a whole is also rewarded: with your help the problem was
solved much faster and at lower cost than would otherwise have been the
case, the scientific results obtained are stronger, and the explanation of
the results in the published paper is clearer. Everyone benefits because of
your comparative advantage—you have the skills to make short work of
a problem that would take the materials scientist weeks to solve. You
each get to do what you’re best at—and society saves thousands of
dollars.

On the same morning that all this begins, you notice another striking
request on your list of top-ranked requests. It comes from a student in
Bangalore, India, who wants some help learning about recent research on
using computer algorithms to simulate complex quantum systems. They
don’t know any local experts, and are learning from online papers, which
they find confusing at some points. You’ve received the request because
you’re an expert on such algorithms, and can easily answer the student’s
questions. Furthermore, you’ve asked your system to alert you to a few
student requests for assistance each week, tailored to areas where you
have a special expertise. A rapid-fire exchange with the student ensues
over the next couple of days, clearing up much of their confusion. Your
work with the student is automatically noted in an archive of your
scientific activity, along with statistics showing your contribution to
public outreach.

A few other requests also show up in your list of top-ranked requests,
but you decide you don’t have time to help out. Among these are several
more collaboration requests broadly similar to that from the materials
scientist, although differing in the details; a request for assistance from a
local school; and a request for reading material from a student whose
thesis topic overlaps with several of your old papers. All of these
requests will be seen by tens or hundreds of other people, most of whom,
like you, have a special expertise closely related to the requests.
Response 1s voluntary, and none of the requests are directed only to you.

All this is made possible by a ranking algorithm that prioritizes the
millions of requests for assistance made daily so that you see only the
requests where you personally are likely to have the greatest interest and
the greatest comparative advantage. The ranking algorithm takes into



account your areas of expertise, what requests you’ve responded to in the
past, the history of the people making the requests, and preferences such
as your desire to help students. By judiciously selecting requests, you
can maximize the impact of your work.

Around the world, similar patterns are being repeated millions of
times over. A cognitive scientist in Ottawa is trying to replicate an
experiment showing how a particular optical illusion can be suppressed
by changing the color of some parts of the illusion. When she began
work, she tried to figure out how to replicate the experiment just from a
broad understanding of the original experiment. She made good
progress, but occasionally got stuck, whereupon she consulted online
videos showing the experiment being done in two other laboratories.
That helped, but she’s still having trouble reproducing the results. After
several days of being bogged down, last night she sent out a request for
help, hoping to find someone with expertise both in optical illusions and
in how the nervous system combines the color information coming from
the different cones in the eye. This morning, she’s heard from a
psychophysicist in Iowa, who’s sent along a modified color scheme, and
some instructions on how to recalibrate the color scheme, if necessary. In
short order she solves the problem, and the experiment is up and running.

Meanwhile, in a research lab in Shanghai, China, a biologist is
working late at night, genetically sequencing a strain of the influenza
virus. When he’s done with the sequencing, he queries online databases
to compare the virus’s genetic makeup to all known viral strains. He
discovers that this is, as he suspected, a new variation of influenza. Over
the next few weeks he will design a vaccine for the new virus. To design
the vaccine, he uses software that pulls down information from dozens of
online databases, effectively asking and receiving answers to thousands
of questions about viruses, their genes, the proteins they produce, and the
effect of those proteins. But unlike our earlier examples, these questions
aren’t made as one-off requests, h information. Instead, the software is
asking the questions and receiving the answers in an automated way,
almost invisibly to the scientist, weaving together knowledge acquired
by tens of thousands of biologists, and then recombining that knowledge
to help make a new discovery.

All over the world millions of connections like these are being made.
Scientists whose work 1s currently stymied by difficult scientific
problems are being connected to other scientists who have the expertise
to quickly solve those problems. It’s an online market in expert attention,
a sort of collaboration market that makes everyone more efficient and



capable, better able to work on problems where they have a comparative
advantage, and leaving other work for other people. In this collaboration
market the sort of connections that today only happen by serendipity
instead happen by design. At the same time as these connections between
scientists are being made, a quieter but far greater exchange of
knowledge is going on in the background, as scientists download and
process vast quantities of data, in this way taking advantage of
knowledge previously acquired by thousands of other scientists. This,
too, 1s a collaboration market, but instead of specialized, one-off
questions, it 1s for questions so standardized that they can be answered
automatically.

Let us zoom back to the personal level, back to Pasadena and Caltech.
Aside from your new collaboration with the materials scientist in
Hungary, you spend most of your day working on one of your ongoing
projects, an ambitious undertaking to design a quantum computer.
Quantum computers are hypothetical computers that harness quantum
mechanics to solve problems that aren’t feasible to solve on conventional
computers. While large-scale quantum computers promise to be
remarkable devices, building them is a huge challenge, because quantum
states are very delicate. To meet this challenge, six months ago you and
two colleagues started a project to design a quantum computer that really
can be scaled up. Your project involves a special approach to quantum
computing called topological quantum computing, an approach that
relies on insights from many different fields of science, ranging from the
mathematical field of topology to the physics of superconductors, and
from semiconductor fabrication to all the detailed ins and outs of the
theory of quantum computing. The project has rapidly grown to involve
more than 100 scientists, from all over the world, collaborating online.
Some of those scientists are theorists, with diverse expertise ranging
across the many areas involved. But most are experimentalists, including
some of the world’s top experts on superconductors and semiconductors,
as well as materials scientists who specialize in preparing high-quality
material samples. Those experimentalists are sharing their tricks and tips
about what’s possible in the most advanced laboratories, the type of
folklore knowledge that separates the labs at the forefront from those a
step behind.

The collaboration hasn’t always made smooth progress toward its
goal. But even when apparently insurmountable obstacles have arisen,
it’s often been possible to get past those obstacles using the same
collaboration market that saw you begin your Hungarian collaboration



this morning. This has also helped draw new people and new expertise
into the collaboration. As the collaboration has grown, it’s become your
biggest ongoing commitment, and most days you spend at least an hour
or two on the project. It’s gone much further than you first imagined, as
the collaboration has found its way around obstacles that you thought
were impassable, and, as the ideas of the collaboratsaw you ve from the
speculative to the more feasible, some of the labs involved are beginning
to prototype some of those ideas.

Some readers—especially, perhaps, those who have worked as
scientists—may read the above paragraphs and think they sound like a
pipe dream. “Why,” they may ask, “would those experimentalists ever
help one another in this way? In the real world, they’ll never share the
key ideas that are their competitive advantage.” Today, this is true, and
we’ll return to this problem in different guises repeatedly in the coming
chapters. But as our understanding deepens, we’ll see that while it is a
challenging problem, it’s not insurmountable. For now, though, we’ll
defer discussion.

These are just a few ideas to stimulate your thinking about how online
tools and collective intelligence can be used to change science. Of
course, far more is possible. Imagine completely open source approaches
to doing research. Imagine a connected online web of scientific
knowledge that integrates and connects data, computer code, chains of
scientific reasoning, descriptions of open problems, and beyond. That
web of scientific knowledge could incorporate video, virtual worlds, and
augmented reality, as well as more conventional media, such as papers.
And it would be tightly integrated with a scientific social web that directs
scientists’ attention where it 1s most valuable, releasing enormous
collaborative potential.

In part 2 of this book we’ll explore, in concrete terms, how the era of
networked science is coming about today. We’ll see, for example, how
vast databases containing much of the world’s knowledge are being
mined for discoveries that would elude any unaided human. We’ll see
how online tools enable us to build new institutions that act as bridges
between science and the rest of society in new ways, and that can help
redefine the relationship between science and society. The place where
these ideas are being most fully realized is in basic science, and so the
focus in part 2 is on basic science—by contrast, applied science is often
carried out by small groups working in secret, inside private companies,
and that secrecy limits their ability to scale up collaboration. But even in
basic science, there are serious obstacles to be overcome. Simple ideas




such as collaboration markets, open source wiki-like research papers,
and sharing of data and computer code face considerable cultural
obstacles. We’ll develop the idea that for networked science to reach its
full potential, it must be open science, based on a culture in which
scientists openly and enthusiastically share all their data and their
scientific knowledge. And, finally, we’ll see how that more open
scientific culture can be created.



PART 2

Networked Science



CHAPTER 6



All the World’s Knowledge

Don Swanson seems an unlikely person to make medical discoveries.
A retired but still active information scientist at the University of
Chicago,has no medical training, does no medical experiments, and has
never had a laboratory. Despite this, he’s made several significant
medical discoveries. One of the earliest was in 1988, when he
investigated migraine headaches, and discovered evidence suggesting
that migraines are caused by magnesium deficiency. At the time the idea
was a surprise to other scientists studying migraines, but Swanson’s idea
was subsequently tested and confirmed in multiple therapeutic trials by
traditional medical groups.
How is it that someone without any medical training could make such
a discovery? Although Swanson had none of the conventional credentials
of medical research, what he did have was a clever idea. Swanson
believed that scientific knowledge had grown so vast that important
connections between subjects were going unnoticed, not because they
were especially subtle or hard to grasp, but because no one had a broad
enough understanding of science to notice those connections: in a big
enough haystack, even a 50-foot needle may be hard to find. Swanson
hoped to uncover such hidden connections using a medical search engine
called Medline, which makes it possible to search millions of scientific
papers in medicine—you can think of Medline as a high-level map of
human medical knowledge. He began his work by using Medline to
search the scientific literature for connections between migraines and
other conditions. Here are two examples of connections he found: (1)
migraines are associated with epilepsy; and (2) migraines are associated
with blood clots forming more easily than usual. Of course, migraines
have been the subject of much research, and so those are just two of a
much longer list of connections that he found. But Swanson didn’t stop
with that list. Instead, he took each of the associated conditions and then
used Medline to find further connections to that condition. He learned
that, for example, (1) magnesium deficiency increases susceptibility to



epilepsy; and (2) magnesium deficiency makes blood clot more easily.
Now, when he began his work Swanson had no idea he’d end up
connecting migraines to magnesium deficiency. But once he’d found a
few papers suggesting such two-stage connections between magnesium
deficiency and migraines, he narrowed his search to concentrate on
magnesium deficiency, eventually finding eleven such two-stage
connections to migraines. Although this wasn’t the traditional sort of
evidence favored by medical scientists, it nonetheless made a compelling
case that migraines are connected to magnesium deficiency. Before
Swanson’s work a few papers had tentatively (and mostly in passing)
suggested that magnesium deficiency might be connected to migraines.
But the earlier work wasn’t compelling, and was ignored by most
scientists. By contrast, Swanson’s evidence was highly suggestive, and it
was soon followed by therapeutic trials that confirmed the migraine-
magnesium connection.

If you suffer from migraines you’ll know the discovery of the
migraine-magnesium connection hasn’t resulted in a cure or a surefire
treatment. Today, magnesium deficiency is just one of many factors
known to contribute to migraines, and the primary cause of migraines
remains elusive and the subject of debate. Nevertheless, uncovering the
migraine-magnesium connection was a significant step in understanding
what makes migraines happen and how to stop them. Furthermore, the
significance of Swanson’s work goes well beyond medicine. While it has
become the conventional wisdom of our age to bewail the information
explosion, as though the massive increase in our knowledge is somehow
a bad thing, Swanson tipped this point of view on its head. He saw the
growth of knowledge not as a problem, but as an opportunity. He
realized that tools such as Medline expand our ability to find meaning in
humanity’s collective knowledge, and so enable us to discover patterns
in the whole that are invisible to unaided humans. No human mind could
ever encompass the millions of experiments indexed by Medline.
Fortunately, no one mind needs to. Working in symbiosis with tools such
as Medline, we can extend our minds so that we can find connections
hidden in superhuman amounts of knowledge. Effectively, such tools are
enabling a new method of scientific discovery.

Searching for Influenza



The method used by Swanson to discover the migraine-magnesium
connection is just one of many new ways of finding meaning hidden in
existing knowledge. A different approach has recently been used by
scientists at Google and the US Centers for Disease Control and
Prevention (CDC) to develop a better way of tracking the spread of the
influenza virus—the flu. Each year, the flu kills between 250,000 and
500,000 people around the world. Governments and health organizations
carefully track the spread of the flu, so they can respond quickly to
outbreaks, and prevent pandemics such as the 1918 Spanish flu, which
killed more than 50 million people. In the United States, the flu is
tracked by the CDC, which signs up doctors across the country to
participate in a tracking program. When a patient reports flu-like
symptoms—a fever and sore throat or cough—the doctor reports that
visit to the CDC. Only a small fraction of doctors participate in the CDC
program, but enough do to allow the CDC to build up an accurate
regional and nationwide picture of the flu. When an outbreak occurs, the
CDC can mobilize, stepping up vaccination programs in the region and
getting the word out in the media. But a problem with the system is that
it takes one to two weeks for cases of the flu to show up in CDC reports.
That time lag i1s a serious concern, because flu outbreaks can grow
rapidly in just a few days.

Hoping to speed up the CDC’s system, the Google and CDC scientists
wondered if search queries entered by users into Google’s search engine
could be used to instantaneously track where the flu is occurring. The
idea is that if there’s a surge of people in the city of Atlanta searching for
(say) “cough medicine,” chances are there’s been an increase of flu in
Atlanta. To get good results, the Google and CDC scientists took the
CDC’s historical flu data from 2003 to early 2007, and looked for
correlations with common Google search queries. They found 45 search
queries that were especially well correlated with the historical flu data.
Using those queries they built a model that they hoped could be used to
instantly figure out where the flu is occurring, just by monitoring Google
searches. They then tested that model by comparing it with a new set of
data, the CDC data from the 2007-08 flu season. Their model gave
nearly perfect (97%) agreement! In other words, Google’s search queries
can be used to determine where flu outbreaks are happening, and how
large they are, but without the time lag suffered by the CDC. What’s
more, Google search queries can be used to track influenza not only in
the United States, but anywhere large numbers of people are using



Google, including places where there is no CDC-like organization
tracking disease. Google has built a website called Google Flu Trends
that uses search queries to track influenza in 29 countries.

The Google Flu Trends results require a couple of caveats. First, many
doctors in the United States now use electronic medical record-keeping
systems, and the CDC has recently partnered with the makers of one of
those systems, General Electric, to develop a new tracking system that
should give it a near real-time ability to track reports of influenza from
14 million patients. It’s possible and perhaps likely that the CDC’s new
system will obsolete Google Flu Trends, at least in the United States.
Second, the CDC data used to build the Google-CDC system did not,
strictly speaking, track influenza. Rather, it tracked “influenza-like”
illnesses from reports of symptoms such as cough and sore throat that are
often associated with the flu. Other conditions such as colds can produce
similar symptoms. A follow-up study done in 2010 confirmed that, not
surprisingly, Google Flu Trends is significantly better at tracking
influenza-like illnesses than it is at tracking actual laboratory-confirmed
cases of influenza. It’s a helpful diagnostic tool, not a perfect way of
tracking the flu.

Using Google to predict the flu is interesting, but even more
interesting are the other possibilities it suggests, possibilities that go
beyond medicine and into every aspect of life. Follow-up research has
already shown that search queries can be used to predict trends in
unemployment and in housing prices, and even to predict how well songs
will do on the music charts. What else might be possible? Could Google
figure out which search queries predict changes in the stock price of
some company, say, Microsoft? What about the behavior of the Dow
Jones Industrial Average? Or which technology startup is the best target
for acquisition? Or the outcome of the next US presidential election? Or
a coup d’état in an unstable country? Suppose Google was tracking the
searches of law clerks working at the US Supreme Court—might it be
possible to predict court decisions? Or perhaps to figure out what
concerns an individual justice has while a case is being heard? Suppose a
Google user is making searches that suggest they’re planning a bank
robbery. Should Google notify law enforcement officials? At a media
conference in Abu Dhabi in 2010, Google CEO Eric Schmidt said, “One
day we had a conversation where we figured we could just try to predict
the stock market. And then we decided it was illegal. So we stopped
doing that.” It’s difficult to know whether to be reassured or horrified. Of
course, it’s not just Google that’s in a position to do this kind of data



mining. Many other organizations—banks, credit card companies, and
popular websites such as Facebook and Twitter—have access to data
sources that may be used to understand and even predict human
behavior. If you have access to data and the means to make sense of it,
data is power.

Finding Meaning in All the World’s Knowledge

For nearly all of recorded history, we human beings have lived our
lives isolated inside tiny cocoons of information. The most brilliant and
knowledgeable of our ancestors often had direct access to only a tiny
fraction of human knowledge. Then, in the 1990s and 2000s, over a
period of just two decades, our direct access to knowledge expanded
perhaps a thousandfold. At the same time, a second, even more important
expansion has been going on: an expansion in our ability to find meaning
in our collective knowledge. We see this expansion in Swanson’s use of
Medline to find connections hidden in our collective medical knowledge,
or the way Google and the CDC combined the CDC’s existing (but
inadequate) knowledge of reported flu with Google’s search data, to
figure out a better way of tracking the flu. We also see examples in our
everyday lives, such as Google’s ability to answer our questions, finding
just the right webpage, news article, scientific paper, or book. Tools such
as Google and Medline redefine our relationship to knowledge, by giving
us ways of finding previously hidden meaning, all the “unknown
knowns” that are implicit in existing human knowledge, but that are not
yet apprehended because of the massive scale of that knowledge. Earlier
in this book we saw how collective intelligence can be amplified by
restructuring expert attention, to take better advantage of the available
expertise. In this chapter we’ll discuss a complementary approach to
amplifying collective intelligence: to build tools that perform cognitive
tasks directly, operating on knowledge itself, by searching for meaning
and hidden connections in our collective knowledge.

The remainder of this chapter is in two parts. The first part tells the
story of a project from astronomy called the Sloan Digital Sky Survey
(SDSS). The SDSS is surveying the universe, much as early mapmakers
surveyed the Earth, using a robotic telescope to explore the sky broadly,



so far taking images of 930,000 galaxies. Those images aren’t just pretty
pictures; they’re being mined by astronomers to answer all sorts of
questions about our universe. We’ll learn how the SDSS has been used to
find the biggest known structure in the universe, a giant chain of galaxies
1.37 billion light-years long; to discover new dwarf galaxies near our
Milky Way galaxy; and to find a pair of orbiting black holes. But
although these discoveries are fascinating in their own right, there’s a
deeper reason we’re interested in the SDSS. That’s because although
access to human knowledge has expanded enormously over the past two
decades, a great deal of scientific knowledge isn ¥ yet publicly accessible,
and a struggle is going on to make it more accessible. And so the first
part of the chapter tells the story of the expansion of the information
commons in science, using the SDSS as a concrete example to
understand both the benefits and the challenges of that expansion. That
concrete understanding prepares us for the second part of the chapter,
where we broaden our focus to think about the big picture. What are the
implications of making all the world’s knowledge openly available? And
what new methods of discovery will it enable?

Exploring the Digital Universe

The largest known structure in the universe is a chain of galaxies
called the Sloan Great Wall. It’s 1.37 billion light-years long, contains
thousands of galaxies, and is about 1 billion light-years away from Earth.
That’s so far away that those galaxies are too faint to see with the naked
eye, but if you could see them, the Sloan Great Wall would stretch across
nearly a third of the sky, all the way from the constellation of Virgo,
through Leo, and on to Cancer. It’s a pretty sight to imagine, all those
galaxies twinkling across the night sky!

The Sloan Great Wall was discovered in 2003, when a team of eight
scientists, led by J. Richard Gott III of Princeton university, decided to
make a visual map of the entire known universe. This sounds grandiose,
but they did it for the same reason we make maps of cities and countries:
displaying our knowledge visually can make it easier to understand what
we know. Imagine how difficult geography would be if we didn’t have
maps, but instead had to rely entirely on verbal descriptions. Problems



that are easy to solve visually, like figuring out how many continents
there are, would all of a sudden become difficult research problems. One
imagines early geographers holding research conferences on “Resolving
the Number of Continental Land Masses,” perhaps with fiercrguments
about questions such as whether Asia and North America are truly
separate continents.

A big difficulty in making a map of the universe is knowing what’s
out there. Modern telescopes let us see trillions of objects, but for the
most part astronomers concentrate on looking at just a tiny fraction of
those objects. This perhaps sounds surprising, but imagine you’re an
astronomer: wouldn’t you prefer to spend your time observing something
you already know is extremely interesting, such as the supermassive
black hole in the core of the Milky Way galaxy, instead of some random
star in some random galaxy? Most astronomers thus spend most of their
time looking at objects already known to be interesting. It’s like the
difference between exploring a city broadly to find interesting new
places, versus the temptation to only revisit familiar haunts. To find
interesting new objects in the sky, someone needs to strike out and
explore the sky broadly.

This is where sky surveys come in. Instead of looking in exhaustive
detail at known objects, the telescopes used in sky surveys systematically
scan the whole sky, building up a broad picture of the universe. Sky
surveys are the foundation of astronomy, often giving us the first clues
about which objects to look at in more depth. One of the earliest sky
surveys was the Almagest, written by the astronomer Ptolemy of
Alexandria in the second century CE. Ptolemy didn’t have a telescope,
but used his naked eye to compile all sorts of useful information about
what he saw in the sky, ranging from a description of how the planets
move to a detailed catalog of 1,022 stars. The A/magest remained the
standard work of astronomy in Europe and the Middle East for the next
800 years.

As you’ve perhaps guessed, the modern-day A/magest is the Sloan
Digital Sky Survey (SDSS), named for the Alfred P. Sloan Foundation,
which provides much of the funding. The SDSS does its work using a
superb telescope located just outside the tiny town of Sunspot, high in
New Mexico’s Sacramento Mountains. The telescope captures light
using a large mirror, 2.5 meters in diameter. The excellent location and
large mirror mean the SDSS takes very good images, and can look all the
way out to the edge of the known universe. The images aren’t quite as
good as those from the world’s biggest telescopes, such as the enormous



10.4-meter Gran Telescopio Canarias, in the Canary Islands. But the
SDSS telescope has a major advantage over most larger telescopes: it has
a special wide-angle lens that lets it rapidly photograph large sections of
the sky. In a single image it can capture an area eight times the size of
the full moon. By contrast, the Gran Telescopio Canarias can only
capture an area one sixteenth the size of the moon, making it unsuitable
for the broad exploration required by a sky survey. Since beginning
operation in 2000, the SDSS has surveyed more than a quarter of the sky,
taking images of 930,000 galaxies along the way. And, as we’ll see,
those images have since been used in thousands of other scientific
projects, including the project of Gott and collaborators to make a map
of the universe.

How do you go about making a map of the universe? It’s a
surprisingly complicated problem. Ideally we’d like a map to show both
objects that are relatively close in astronomical terms, such as the nearby
stars, which are just a few light-years away, and also the most distant
galaxies, which are billions of light-years away. It’s hard to do both those
things on the same map. The mapmaking problem is o complicated by
the fact that the universe is three-dimensional, while ordinary maps are
two-dimensional. Of course, there are many ways you can try to address
these complications, but that leads to still another problem: of the many
ways you can make your map, which way is the best? A feature that’s
strikingly obvious in one way of visualizing the universe may be nearly
invisible in another. And what if you make the wrong choice? Mapping
the Earth’s surface is a much easier problem, yet early mapmakers still
tried out many different projections to make sense of the Earth.
Similarly, Gott and his collaborators experimented with many different
ways of making their map. One of the maps they made took the galaxy
data from the SDSS, and used it to visualize the distribution of galaxies
in the universe. That map is shown in figure 6.1. It’s not an ordinary map
like a roadmap, and so it takes a bit of effort to understand, but it’s worth
reading through the caption in detail to understand what’s being shown.
The key point is the concentration of galaxies in the upper left-hand
corner of the map, a concentration much denser than through the rest of
the map. It was humanity’s first ever glimpse of the Sloan Great Wall.

The Sloan Great Wall is just one of thousands of scientific discoveries
made using the SDSS. To give you more of the flavor of the SDSS’s
impact, let me briefly describe two more of those discoveries. You
perhaps already know that our Milky Way galaxy has two neighboring
galaxies, the Large and Small Magellanic clouds. These are dwarf



galaxies, with the larger of the two containing about 30 billion or so
stars, compared to our Milky Way’s hundreds of billions. If you’ve never
been to the southern hemisphere, then you may never have seen the
Magellanic clouds, for they’re too far south in the sky to be visible from
much of the northern hemisphere. But they are visible on a dark night in
the southern hemisphere, where they show up as smudges in the sky.
According to our best current understanding of galaxy formation, the
Milky Way should have tens or hundreds of nearby dwarf galaxies. But
prior to the SDSS only a few dwarf galaxies other than the Magellanic
clouds had been discovered, and it was a puzzle where all the other
missing dwarfs were. When the SDSS images became available, several
astronomers searched the images for more dwarf galaxies. They didn’t
do this manually—it would have taken far too long to peruse all the
images. Instead, they used computer algorithms to search out new dwarf
galaxies in the SDSS images. What they’ve found so far is nine new
dwarf galaxies near the Milky Way, going much of the way toward
solving the puzzle of the missing dwarfs.
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Figure 6.1. A blown-up piece of one of the maps of the universe
made by Gott and collaborators. You’ll notice that the map resembles a
piece of pie. You should imagine yourself on the Earth, right at the center
of the pie, looking out at the universe. Each point on the map represents
a single galaxy from the SDSS. The radial direction indicates the
distance to the galaxy, with the closest galaxies in the plot about 700
million light-years away, and the furthest about 1,300 million light-years
away (as marked on the right-hand side). All the galaxies shown in the
plot are very close to the celestial equator, the great arc going across the
sky, directly above the Earth’s real equator, and circumnavigating the
Earth. What you’re seeing here, then, are the galaxies in a thin slice of
the sky, all very near the celestial equator. The angular direction in the



plot shows where along the celestial equator the galaxy is located.axies
on the left-hand side of the map are in the direction of the constellation
of Virgo, galaxies in the middle are in the direction of Leo, and galaxies
on the right are in the direction of Cancer. The dense chain of galaxies
concentrated in the upper left is the Sloan Great Wall. Credit:
Reproduced by permission of the American Astronomical Society.

As another example of an SDSS-enabled discovery, in 2009 the
astronomers Todd Boroson and Tod Lauer used the SDSS to discover
two black holes orbiting around one another. The way Boroson and
Lauer found the paired black holes was—you won’t be surprised!—by
using a computer to search galaxy images from the SDSS. Now, black
holes have no color, and don’t show up directly in photos. But black
holes are surrounded by huge amounts of glowing matter that’s falling in,
and so in a sense it’s possible to “see” black holes in the galaxy images,
to talk about them having a color, and so on. The key to Boroson and
Lauer’s work was a clever guess they made, which was that if two black
holes were orbiting one another, they would appear to have slightly
different colors. The reason they made this guess is interesting. When
objects are moving at a high enough speed—it needs to be a considerable
fraction of the speed of light—their apparent color changes appreciably.
Why this happens is a long story, which we won’t get into, but as an
example, a red object that’s moving very quickly toward the Earth
actually looks a little bit bluer. Boroson and Lauer reasoned that two
black holes orbiting one another would have different velocities relative
to the Earth, and so one would be ever so slightly bluer than the other.
Armed with this double coloring idea, Boroson and Lauer used their
computer to go hunting in the SDSS data. Their hope paid off when they
found a galaxy four billion light-years away with exactly the double
coloring signature they were looking for. They followed up with a more
detailed examination of the galaxy, confirming the presence of the
orbiting black holes, and revealing that they are both staggeringly large,
20 million and 800 million times the mass of the sun, respectively, and a
third of a light-year apart, orbiting one another roughly once every 100
years. The discovery has excited great interest, and also set off a debate,
with other astronomers wondering if there might be some other
explanation for what Boroson and Lauer are seeing. At the moment, the
orbiting black hole theory remains the leading candidate among several
possible explanations. But no matter what the truth turns out to be, no



one doubts that Boroson and Lauer have discovered something
remarkable.

All these discoveries are striking, but they don’t fully convey the
enormous impact the SDSS has had on astronomy. One way to grasp that
impact is to look at how many times the results of the SDSS have been
cited (i.e., referred to) in other scientific papers. Most papers in
astronomy are cited just a few times, if they’re cited at all. A paper that’s
cited tens of times is quite successful, while a paper that’s cited hundreds
of times is either famous or well on its way. The original SDSS paper has
been cited in other papers more than 3,000 times. That’s more citations
than many highly successful scientists receive over their entire career. To
give you some feeling for what an achievement this is, Stephen
Hawking, probably the world’s most famous scientist, has just a single
paper with more than 3,000 citations. Hawking’s paper, which he
published in 1975, in fact has just over 4,000 citations as of 2011. By
contrast, the SDSS paper was published in 2000, and already has more
than 3,000 citations. It will soon catch up to and surpass Hawking’s
paper. Several follow-up s describing other aspects of the SDSS have
also received more than 1,000 citations. When I compared the SDSS to
Ptolemy’s Almagest 1 wasn’t joking. The SDSS is one of the most
successful ventures in the entire history of astronomy, worthy of a place
alongside the work of Ptolemy, Galileo, Newton, and the other all-time
greats.

Open Data

What’s made the SDSS such a success? We’ve already discussed
some of the reasons: the SDSS has an excellent telescope and broad
coverage of the sky. But those can’t be the only reasons. In the 1940s and
1950s astronomers used the giant S-meter Palomar telescope outside San
Diego, California, to carry out the Palomar Observatory Sky Survey. But
while the Palomar telescope is in some respects even better than the
SDSS telescope, the Palomar survey had a much less dramatic impact on
astronomy. Why is that the case? The main reason is that the Palomar
survey produced bulky photographic plates, which are expensive to
move around and to duplicate, and so could only be accessed by a few



people. By contrast, the SDSS has used the internet to share its data with
the entire worldwide community of astronomers. Since 2001, the SDSS
has done seven major data releases, putting its images (and other data)
up on the web where anyone can download them. If you want, you can
go right now to the SDSS’s online SkyServer, and download stunning
images of distant galaxies. Anyone can do it, and the site is designed to
be used not just by professional astronomers, but also by members of the
general public. The tools on the site range from tours of the most
beautiful sights in the sky, through to the ability to send sophisticated
database queries that will return images with particular desired
characteristics. The site even contains tutorials explaining how to do
things like find asteroids, or star-forming regions in other galaxies.

This open sharing of data by the SDSS seems like a small innovation
when compared to the radical approaches to collective intelligence we
saw in examples such as the Polymath Project and Kasparov versus the
World. But the impact of the open sharing of data by the SDSS is
enormous. It means that people such as Todd Boroson and Tod Lauer—
people who aren’t members of the SDSS collaboration—can come along
and ask fundamental questions that no one had ever thought to ask
before: “Can we use the SDSS data to search for pairs of orbiting black
holes?” In science, discoveries are often constrained by the limits to our
knowledge. But experiments such as the SDSS produce such an
extraordinary wealth of knowledge—more than 70 terabytes of data, far
beyond the ability of any single human to comprehend—that they
confound that expectation. Confronted by such a wealth of data, in many
ways we are not so much knowledge-limited as we are question-limited.
We’re limited by our ability to ask the most ingenious and outrageous
and creative questions. By opening up its data to the whole world, the
SDSS has enabled people such as Boroson and Lauer to ask such
questions, questions that might never have been asked if access to the
data was limited. It’s the same thing we saw in Swanson’s discovery of
the migraine-magnesium connection: Swanson used no facts that weren’t
already known, but by asking a new question of existing knowledge, he
made a valuable discovery. It’s a variation on the designed serendipity
we saw in part 1. Instead of broadcasting a question to the world and
hoping for an answer, projects such as the SDSS broadcast data to the
world, in the belief that people will ask unanticipated questions that lead
to new discoveries.

The SDSS’s sharing of data isn’t just important because of the
discoveries it enables. It’s also important because sharing data in this



way, as simple and obvious as it might seem, in fact is a radically daring
step for the scientists involved. Most scientists guard their data jealously.
Their data is their raw record of experimental observations, and may lead
to important new discoveries. It’s their special edge over their colleagues
and competitors. Unusual as it may be for them to openly reveal their
data, it’s even more unusual for them to encourage their colleagues to
make independent analyses, and perhaps independent discoveries. You
can grasp something of what’s at stake by looking at some famous cases
where data was partially revealed. For instance, earlier I mentioned
Ptolemy’s Almagest, one of the great scientific works of antiquity. But I
should perhaps have put “Ptolemy” in quotes, because many historians
of science—not all, but many—believe that Ptolemy plagiarized many of
the star positions in his catalog from the astronomer Hipparchus, who
had done his own sky survey nearly 300 years earlier. In fact, the history
of science is full of examples of scientists stealing data from one another.
Back at the dawn of modern science the astronomer Johannes Kepler
discovered that planets move in ellipses around the sun using data he
stole from his deceased mentor, the astronomer Tycho Brahe. James
Watson and Francis Crick discovered the structure of DNA with the aid
of data they borrowed from one of the world’s leading crystallographers,
Rosalind Franklin. I say borrowed, because this was done without her
knowledge, although with the aid of a colleague of Franklin’s who was
arguably within his rights. These are, admittedly, extreme examples, but
they do show why most scientists go to some trouble to keep their data
secret.

There’s a puzzle here, then: why does the SDSS share data so openly?
Think about the situation from the point of view of members of the
SDSS collaboration. Almost certainly there are important discoveries
that they could have made, but which they were beaten to by someone
outside the collaboration who used SDSS data. To put it in starkly self-
interested terms, while open data may be good for science, it’s arguably
bad for the careers of members of the SDSS collaboration. Why do they
stand for it? Why doesn’t the SDSS lock up the data?

In fact, the SDSS does partially lock up the data. When the SDSS
telescope takes images, they aren’t immediately made public. Instead, for
a brief period of time—typically a few months to a little over a year—
they are only available to official members of the SDSS collaboration.
It’s only after that period has elapsed that the data are made freely
available to everyone in the world.



There’s a similar partial openness about the membership of the SDSS
collaboration. While most scientific experiments still involve only a
small number of participants, the SDSS collaboration has 25
participating academic institutions, and includes also 14 additional
scientists who are not at any of the participating institutions. All in all,
roughly 200 scientists are official members of the collaboration, far more
than was scientifically necessary to get the SDSS up and running. The
home page of the website for the current phase of the SDSS (stage III)
even encourages ‘[i|nquiries from interested parties to join the
collaboration.” Astronomy is a small community, with just a few
thousand professional astronomers in the world. As a result many, perha
most, professional astronomers have a friend or colleague who is part of
the SDSS collaboration, and with whom they can potentially collaborate
using SDSS data, even during the initial period when the data are not
open.

These explanations clarify the process the SDSS uses to share data,
but they don’t answer our starting question, which is why the SDSS
makes its data partially open in the first place. Why not just lock the data
up for good? And why isn’t the SDSS collaboration deliberately kept as
small as possible, to increase the benefits received by individual
members? Before I answer these questions, I want to briefly describe
several more examples of experiments that make their data openly
available. Those examples will help us understand why and when
scientists make their data openly available, and why open data is
important.

Building the Scientific Information Commons

In September of 2009 an organization called the Ocean Observatories
Initiative began building a high-speed network for data and electricity on
the floor of the Pacific Ocean. They’re extending the internet to the
ocean floor, with the eventual plan being to lay 1,200 kilometers (750
miles) of cable, from the shores of Oregon all the way up to British
Columbia. This underwater internet will range more than 100 kilometers
(60 miles) offshore. When it’s complete, all manner of devices will be
plugged into the network, from cameras to robot vehicles to genome-



sequencing equipment. Imagine a volcano erupting underwater, and
nearby genome-sequencing equipment switching on to take genetic
snapshots of never-before-seen microbes vented during the eruption. Or
imagine a network of thermometers and other sensors mapping out the
underwater climate, much the way the SDSS is mapping out the
universe. But the Ocean Observatories Initiative is going even further
than the SDSS, making their data openly available right from the start, so
anyone in the world can immediately download the data, looking for new
patterns and asking new questions. What new discoveries will be made
with this unprecedented knowledge of the ocean floor?

It’s not just the oceans and the universe that are being mapped out.
Efforts are now underway to build a map of the human brain. For
example, scientists at the Seattle-based Allen Institute for Brain Science
are building the Allen Brain Atlas, mapping out the brain down near the
level of single cells, and determining which genes are turned on in which
regions of the brain. It’s an important step along the way to
understanding how genes make a mind, and has the potential to be
tremendously useful in understanding how our minds work. Scientists at
the Allen Institute have sliced up 15 brains into hundreds of thousands of
slices, each slice just a few microns thick. They then analyze each slice,
determining which genes are turned on, and where. It’s all done by a
team of five robots that work around the clock, each robot analyzing 192
brain slices per day, every day. The Allen Institute scientists expect to
complete their map of the brain by 2012, when the results will be made
available as open data, for anyone in the world to download and analyze.
An earlier effort by the Allen Institute, completed in 2007, has already
given us an openly accessible map of how genes are expressed in the
mouse brain. Furthermore, this work by the Allen Institute is part of a
larger movement in neuroscience, toward an even more ambitious goal,
mapping out the entire human connectome—the position of every
neuron, every dendrite, every axon, and every synapse in the brain. It’s
possible that, one dayo anyonot-too-distant future, we’ll have a detailed,
publicly accessible model of the entire human brain.

What we see in examples such as the SDSS, the Ocean Observatories
Initiative, and the Allen Brain Atlas is the emergence of a new pattern of
discovery. The SDSS is mapping out the entire universe. The Ocean
Observatories Initiative will make broad-ranging observations of the
ocean floor. The Allen Brain Atlas is mapping out the human brain. Still
other projects aim to build detailed maps of the Earth’s atmosphere, of
the Earth’s surface, of the Earth’s climate, of human language, of the



genetic makeup of all species. For just about any complex phenomenon
in nature, chances are there’s a project afoot to map out that phenomenon
in detail. In many cases, it’s not just a single project, but a whole pipeline
of projects providing increasingly more detailed knowledge. We’ve seen
this with human genetics, where the Human Genome Project mapped out
the basic human genetic template; it was followed by the haplotype map,
which mapped out the variations in human genetics; today, follow-up
projects are getting still more detailed information about genetic
variations in specific human groups. In astronomy, the SDSS will soon
be succeeded by the Large Synoptic Survey Telescope (LSST), which
will carry out a survey superior to the SDSS in nearly every way. The
LSST, which is being built in the Andes of Chile, will be one of the
world’s largest telescopes, with an effective mirror diameter of 6.68
meters, much larger than the SDSS mirror, and so producing much better
images. The telescope will have such an enormous field of view that it
will map out the entire visible sky once every four days, instead of taking
years to map out a fraction of the sky. Again, all the data will
immediately be made openly available online.

Taken together, these and other similar projects are mapping out our
world in incredible, unprecedented detail. Of course, similar survey
projects have been undertaken through the whole history of science,
from the Almagest to the great botanists of the eighteenth and nineteenth
centuries. But what’s going on today is special and unprecedented. The
internet has dramatically expanded our ability to share and extract
meaning from the models we are building. This has caused a
corresponding increase in their scientific impact, as the SDSS vividly
illustrates. The result is an explosion in the number and ambition of these
efforts, bringing about a great age of discovery, much like the age of the
explorers of the fifteenth to eighteenth centuries. But whereas those
explorers went to the limits of the Earth’s geography, the new
discoverers are exploring and mapping out the boundaries of our
scientific world.

As more data is shared online, the traditional relationship between
making observations and analyzing data is changing. Historically,
observation and analysis have been yoked together: the person who did
the experiment was also the person who analyzed the data. But today it’s
becoming more and more common for the most valuable analyses to be
done by people outside the original laboratory. In some parts of science
the division of labor is changing, with some people specializing in
building the experimental apparatus and collecting data, while others



specialize in analyzing the data from those experiments. In biology, for
example, a new breed of biologist has emerged, the bioinformatician,
whose chief skill isn’t growing cell cultures or the other traditional skills
of the biology lab, but who rather combines the skills of computer
programmer and biologist to analyze existing biological data. In a similar
way, chemistry has seen the emergence of cheminformatics, and
astronomy the emergence of astroinformatics. These are disciplines
where the main emphasis isn’t on doing new experiments, but rather on
finding new meaning in existing data.

Why is Data Being Made Open?

Let’s return to the puzzle of why and when scientists make their data
openly available. A clue comes from the size of the experiments. The
SDSS, the Ocean Observatories Initiative, and the Allen Brain Atlas all
cost (or will cost) tens or hundreds of millions of dollars, and involve
hundreds or thousands of people. Our earlier examples of open data,
such as the Human Genome Project and the haplotype map, were also
enormous projects. But most scientific experiments are far smaller. And
in the smaller experiments, open data is the exception, not the rule.
Before I became interested in open data, I worked for 13 years as a
physicist. In that time, I saw hundreds of experiments, nearly all of them
small experiments done in modest laboratories. So far as I know, not a
single one of those experiments made any systematic effort to make their
data open. We saw something similar in the opening chapter, in the early
reluctance of scientists to share genetic data in online databases such as
GenBank. This has only changed because of major cooperative efforts
such as the Bermuda Agreement on sharing human genetic data. Across
science, the situation today is changing, with some scientific journals and
grant agencies enacting policies that encourage or mandate that data be
made openly available after experiments have been published. But open
data remains the exception, not the rule. If you head out to your local
university and walk into a small laboratory, you’ll most likely find that
the data is kept under lock and key, sometimes literally.

It seems, then, that big scientific projects are more likely to make their
data open than small projects. Why is that the case? Part of the



explanation is political. Think about the SDSS. A typical small
astronomy project may cost “only” a few tens or hundreds of thousands
of dollars. That’s a lot of money, but it’s small change out of the billions
of dollars our society spends on astronomy. If the people doing the
experiment keep the data to themselves, it’s not a big loss to other
astronomers. Furthermore, those other astronomers aren’t in any position
to complain, for they too are keeping the data from their experiments
secret. It’s a stable, uncooperative state of affairs. But the SDSS’s size
makes it special and different. It’s so large that it consumes much of the
entire world budget for astronomy. If the data is kept secret, then to
astronomers outside the SDSS collaboration it’s as though that entire
chunk of money has simply disappeared from the astronomy budget.
They have every reason to insist that the data be made open. And so, if
large projects don’t commit to at least partial openness, their applications
for funding risk being shot down by people in the same field but outside
the collaboration. This motivates big scientific projects to make their
data at least partially open.

There is another factor inhibiting open scientific data, which is that
even if you are willing to share your data, it can be difficult to do so in a
way that’s useful to others. You can take all the photographs of galaxies
you like, and share them with others, but those photographs are of
limited scientific use without all sorts of extra information. What color
filters did you use? Has the image been processed in any way, say, to
remove bad or damaged pixels? Was there any haze the nhe photos were
taken, which might obscure the image? And so on. In many parts of
science it’s difficult to make sense of experimental data without detailed
calibration information. And even with the data and the calibration
information, other scientists still need an extremely detailed
understanding of the experiment to make use of the data. Add on top of
that problems like being sure everyone is using technical terminology in
exactly the same way, file format conversion, and so on. Individually
these are all soluble problems, but together they’re a formidable obstacle
to sharing data in a way that’s useful.

These questions about sharing data are part of a deeper story, a story
about why and when scientific knowledge is shared. Earlier in the book,
I mentioned several times that scientists build their reputation and career
based on the papers they’ve written. A reputation for writing great papers
will get them a good scientific job, and continued grant support. Much of
the challenge with data sharing is that the rewards scientists get for
sharing their data are much more uncertain than the rewards for writing



papers. It’s true that a few large collaborations such as the SDSS have
won widespread kudos for sharing data. But in many areas of science,
there are few established norms for how and when the use of someone
else’s data should be acknowledged. And that means that sharing data 1s
chancy for a scientist. It’s just not something scientists are typically well
rewarded for, despite the fact that it’s enormously valuable. And so open
data remains uncommon, especially in smaller laboratories. We will
return to the question of how to get scientists enthused about sharing data
(and other related questions) in chapters 8 and 9. For the purposes of the
remainder of this chapter it’s enough that there is already a considerable
(and increasing) amount of scientific data openly available, through
projects such as the SDSS and the Human Genome Project.

Dreaming of the Data Web

So far in this chapter we’ve taken a concrete, near-term perspective,
looking at existing projects such as the SDSS. But the internet is an
infinitely flexible and extensible platform for manipulating human
knowledge, with a potential that is open-ended. To understand that
potential we need to expand our thinking, and move to a long view that
sees the internet not as a ten- or twenty-year revolution, but as a
hundred- or thousand-year revolution. We need to imagine a world where
the construction of the scientific information commons has come to
fruition. This is a world where all scientific knowledge has been made
available online, and is expressed in a way that can be understood by
computers. Imagine, furthermore, that the data aren’t isolated in tiny
little islands of knowledge, as they are today, with separate, siloed
descriptions of phenomena that are fundamentally connected in nature,
phenomena such as amino acids, genes, proteins, drugs, and human
medical records. Instead, we’ll have a linked web of data that connects
all parts of knowledge. Rather than mining that knowledge in a
piecemeal way, we’ll be able to do automated inference on all of human
knowledge, finding hidden connections on a scale that dwarfs the work
of Swanson or even the SDSS. We’ll give this dream a name: we’ll call it
the dream of the data web.



The data web sounds grandiose. But, as we’ve seen, we’ve already
taken many small steps toward the data web, through projects such as the
SDSS and the Human Genome Project. What’s gradually emerging is an
online netcalof knowledge that’s intended to be read by machines, not by
humans. Those machines will find meaning in that network of
knowledge, and help explain it to us. In the remainder of this chapter
we’ll ask how the data web will be built, and what it will mean.

There is, however, a difficulty in the discussion, a difficulty that
bedevils every discussion of the potential of computers to find meaning
in knowledge: the more you speculate on this potential, the further you
go 1in the direction of a discussion of full-blown artificial intelligence, the
science-fictional  the-internet-wakes-up-to-take-over-the-world  type
scenario. That’s a lot of fun to talk about, but it’s too easy to get bogged
down in speculative questions: “So, can machines ever become
conscious, and what 1s consciousness, anyway?” or “Well, yes, maybe
one day the internet will wake up and take over, and what of it?” This is
all ground that’s been trodden many times before. Instead of repeating
those discussions, we’ll explore a middle ground between the near-term
projects discussed earlier in the chapter, and full-blown artificial
intelligence. This middle-ground future is conceptually rich, fascinating,
and strangely under-discussed, perhaps because the dreams of artificial
intelligence exert such a strong pull on the imaginations of the
technologically curious. What we’ll do is synthesize current ideas from
computer science to understand what happens when you take today’s
algorithms and imagine a future in which they can be applied across all
scientific knowledge. As we’ll see, the likely results are spectacular.

Data-Driven Intelligence

To understand what the data web can be used to do, it helps to give a
name to the ability of computers to extract meaning from data. I will call
that ability data-driven intelligence. Examples of data-driven intelligence
include the algorithms used in the Medline searches Don Swanson did to
discover the migraine-magnesium connection, the algorithms used to
correlate Google searches with CDC flu data, and the algorithms used to



mine the SDSS for dwarf galaxies and orbiting black holes, and to
discover the Sloan Great Wall.

The term “data-driven intelligence” is not new. But at present it is
mostly used in a more restricted sense than what I’m proposing, to
describe data-driven approaches to making corporate business decisions
—for instance, the way airlines mine data on passenger no-shows to
know how much to overbook their flights. I’m proposing to use the term
in a much more general way, as a broad category of intelligence, similar
to the way we use terms such as “human intelligence” and “artificial
intelligence.” In this general sense, “data-driven intelligence” is a much-
needed term, partly because of the large and rapidly growing number of
examples of data-driven intelligence. But what’s even more important is
that the term highlights a particular approach to finding meaning, an
approach for which computers are superbly well suited, and which is
different from and complementary to the way we humans find meaning.

Of course, a human chauvinist might object to my use of the term
“intelligence” in “data-driven intelligence,” arguing that there’s nothing
very intelligent about a computer searching ten million scientific papers,
or searching the SDSS for dwarf galaxies. It’s just routine, mechanical
work, albeit on a scale far beyond human ability. But here’s the point:
these are problems we humans can’t solve at all. When it comes to
making meaning from terabytes or petabytes (thousands of terabytes) of
data, we’re not much better than any other animal. We have, at best, a
few very specialized abilities in this domain, such as the ability to
process visual images, and virtually no general-purpose large-scale data-
processing ability. So who are we to judge computers in this domain? An
unaided human’s ability to process large data sets is comparable to a
dog’s ability to do arithmetic, and not much more valuable. So while
these problems perhaps don’t require computers to be very smart, in this
problem domain they are a lot smarter than humans. This point of view is
captured in the diagram shown on this page.
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It’s human nature to focus on the problems on the right of the diagram,
the problems where human skill and ingenuity are most valuable. And
it’s normal human prejudice to undervalue the problems on the left, the
domain where data-driven intelligence really shines. But we’ll put aside
this prejudice, and think about the problems on the left. What problems
can computers solve that we can’t? And how, when we put that ability
together with human intelligence, can we combine the two to do more
than either is capable of alone?

As an example of the latter, in 2005 the chess website Playchess.com
ran what they called a freestyle chess tournament, meaning a tournament
where humans and computers could enter together as hybrid teams. To
put it another way, the tournament allowed human intelligence to team
up with data-driven intelligence, in the form of chess-playing computers,
which rely on enormous opening and endgame databases, and which
analyze myriad possible combinations of moves in the midgame. One of
the entrants in the tournament was the team behind the Hydra series of
chess computers. Hydra, at the time the world’s strongest chess
computer, had never lost a game in regular play to any human chess
player, and on several occasions had easily defeated top grandmasters.
The Hydra team entered two of their computers, one playing entirely on
its own, and the other playing with some human assistance. Also entered
in the tournament were several teams pairing strong grandmasters with
strong chess computers. On their own, neither the grandmasters nor their
computers could match the Hydras. But the joint human-computer teams
trounced the Hydras. Not only did neither Hydra win the tournament, but
in fact neither even made it to the quarterfinals. The grandmasters could
beat the Hydras because they knew when to rely on their computers, and
when to rely on their own judgment. Even more interesting, the winner
of the tournament was a team called ZackS that consisted of two low-



ranked amateur players using three off-the-shelf computers, and standard
chess-playing software. Not only did they outclass the Hydras, they also
outclassed the grandmasters with their strong chess-playing computers.
The human operators of ZackS demonstrated exquisite skill in using the
data-driven intelligence of their computer algorithms to amplify their
chess-playing ability. As one of the observers of the tournament, Garry
Kasparov, later remarked, “Weak human + machine + better process was
superior to a strong computer alone and, more remarkably, superior to a
strong human + machine + inferior process.”

Data-driven intelligence has broader goals than artificial intelligence.
For the most part, artificial intelligence takes tasks that human beings are
good at and aims to mimic or better human performance. Think about
computer programs to play human games like checkers, chess, and go, or
efforts to train computers to understand human speech. Data-driven
intelligence can be applied to these traditionally human tasks—it can
understand human speech, or play chess—but where it really excels is in
solving different kinds of problems, problems involving skills
complementary to human intelligence, problems such as Swanson’s
searches of the medical research literature, or Boroson and Lauer’s
mining of the SDSS data for pairs of orbiting black holes. A full-fledged
data-driven intelligence would be able to play checkers, chess, or go, but
it wouldn’t play them for fun. It would play games with a scope whose
complexity was entirely beyond human comprehension.

The term “intelligence” 1s often used to mean some kind of
generalized intellectual ability. Data-driven intelligence is more targeted
in nature, with different kinds of data-driven intelligence used to solve
different kinds of problems. We’ll see an explicit example in the next
section, which looks at the algorithms biologists use to do genome
sequencing. A quite different set of algorithms is used to do searching in
services such as Medline. For each problem, a different kind of data-
driven intelligence is required. A consequence is that data-driven
intelligence in some problem domain may start out quite stupid, but
gradually get smarter as we develop improved methods. For instance,
when Swanson did his migraine-magnesium work, search tools such as
Medline used relatively simple ideas. Today’s search engines use much
more sophisticated ideas, and tomorrow’s search engines will no doubt
be much better still. Indeed, as data-driven intelligence helps companies
such as Google turn a profit, those companies pour money into
developing still better techniques, resulting in a virtuous circle of
improvement.



How is data-driven intelligence related to collective intelligence?
Actually, that’s not quite the right question for our discussion. We’re
interested in data-driven intelligence as a way of augmenting our own
intelligence, and so a better question 1is: how does data-driven
intelligence relate to the tools we studied in part 1, the tools that amplify
collective intelligence? As we saw, those tools work by restructuring
expert attention so it’s more effectively allocated. There’s thus no direct
relationship between tools that amplify collective intelligence and data-
driven intelligence. But the two can be used in a complementary way.
For instance, we’ve seen how data-driven tools such as Medline provide
new ways of finding meaning hidden in the collective knowledge of
large groups of people, such as the biomedical community. And data-
driven tools such as Google can be used to amplify our collective
intelligence by helping us find the information and the people that we
should be paying attention to. Conversely, Google uses our collective
intelligence to build its service, mining the web for content, and using
the link structure of the web to figure out which pages are most
important. So even though data-driven and collective intelligence are
different, they can be used to reinforce each other.

This is not a textbook on data-driven intelligence, and I won’t describe
the hundreds of clever algorithms in use or under development. For us,
data-driven intelligence is primarily important as a concept that unifies
examples such as Google Flu Trends, the Sloan Great Wall, and
Swanson’s migraine-magnesium discovery. Underlying all these
examples are clever algorithms that extract meaning from data that is
otherwise beyond human ality to comprehend. Data-driven intelligence
1s in some sense complementary to the data web: although data-driven
intelligence can be applied to any data source, it reaches its fullest
potential when applied to the richest possible data sources, and the data
web is the richest data source we can imagine. Data-driven intelligence is
what will allow us to take all the world’s knowledge and make meaning
from it.

Data-Driven Intelligence in Biology



To make data-driven intelligence more concrete, let me describe in
some detail an example from biology of how it works. The example
shows how we can use clever algorithms and the scientific information
commons to do something remarkable: find the genome of a human
being. To understand the example, we first need to recall a little
background about genetics. As you know, inside each of the cells in your
body are many strands of the DNA molecule. Those strands of DNA
carry information, and the information they carry is the design for you.
To understand how DNA carries this information, recall the double helix
structure of DNA. The helices are beautiful and memorable, but the
information isn’t stored in the helices, per se. Rather, it is stored in
between the helices. Every few nanometers as you move up the double
helix there is a pair of molecules joining the two sides of the helix, called
a base pair. It’s a pair of special little mini-molecules that bond to one
another, and to the backbones of the double helix. There are four types of
base molecule, called adenine, cytosine, guanine, and thymine. Their
names are usually just shortened to A, C, G, and T. The A bonds to the T
and the C to the G, so the possible pairs are A-T and C-G. You can thus
describe the information in a single strand of DNA through a long
sequence of letters—say, CGTCAAGG . . . — representing the bases
bonded to one side of the helix (the other side will have complementary
bases, GCAGTTCC . . .). That sequence is a description of your basic
architecture. How exactly it specifies that architecture is still only
partially understood, but everything we know suggests the sequence of
DNA base pairs is the blueprint for our design.

How do we figure out the DNA sequence for a person? In fact, if we
start with a fragment of DNA that is just a few hundred base pairs long,
then it can be directly sequenced using clever old-school chemistry—
essentially, one scientist, in their lab, carefully mixing chemicals. But if
the DNA strand is much longer than that, then the problem of sequencing
gets more complex. A typical strand of human DNA contains several
hundred million base pairs, far too long to be sequenced directly. But
there is a clever way of combining direct sequencing of short DNA
strands with data-driven intelligence to figure out the full DNA
sequence.

To understand how it works, imagine that I gave you a copy of the
first Harry Potter book, Harry Potter and the Philosopher's Stone. But
instead of giving you an ordinary copy of the book, I’ve taken a pair of
scissors and cut the book into tiny little fragments. For example, the
opening of the book might be cut up into these fragments:



“Mr. and Mrs. Dursley, of number four, Priv”;
“et Drive, were proud to say that they we”;

“re perfectly normal, thank you very much.”

And so on. I’ve simplified things a bit here by showing the fragments
in the same order they appear at the beginning of the book. But I want
you to imagine that I’ve given them to you in the wrong order, all
scrambled up. At the same time, imagine I have also given you a second
copy of the book, also cut up into small fragments, but in a different
way:

“Mr. and Mrs. Dursley, of num”;
“ber four, Privet Drive, were proud to”;

“say that they were perfectly normal, tha™.

Even though the fragments in the two cases are different, there’s
quite a bit of overlap, and you can use those overlaps to figure out which
fragments go together. Notice, for example, that the fragment “Mr. and
Mrs. Dursley, of number four, Priv”’ overlaps with both “Mr. and Mrs.
Dursley, of num” and “ber four, Privet Drive, were proud to.” This
suggests pasting the last two fragments together, to get “Mr. and Mrs.
Dursley, of number four, Privet Drive, were proud to.” By continuing
very carefully in this way, you could reconstruct quite long sequences
from the book. You’d only get stuck if, by chance, the overlap between
two fragments was so short that it made it hard to tell that they really
were overlapping fragments of the same text. But if I gave you a third
(and a fourth . . .) copy of the book randomly cut up in this way, the
chances of all the overlaps being short at any given point would drop
dramatically, and you might well be able to reconstruct the entire book.

Genome sequencing for humans (and other complex life-forms) works
in a similar way. While we can’t directly sequence long strands of DNA,
we can make many copies of those strands, then cut the copies up at
random locations, and directly sequence the fragments. This can all be
done using old-school chemistry, one scientist in their lab, etcetera. We
then use our computers to figure out where different fragments overlap,



and put everything back together again. (Incidentally, I’ve glossed over
some subtleties, such as the repetition of certain DNA sequences
throughout the human genome, which makes it harder to reassemble the
full DNA sequence. These subtleties can be addressed using other tricks,
but you now get the general idea.)

Now, imagine that we want to sequence someone’s DNA today.
Perhaps it’s for a paternity test. Or maybe it’s as part of a criminal
investigation. It doesn’t matter what the reason is. It turns out that we
can actually simplify the above procedure for DNA sequencing, using
the facts that (1) a reference human genome is already known, and (2)
thanks to the haplotype map, we know where in the genome people may
differ, and where, it seems, we’re always the same. To understand how
the simplified process works, imagine now that you possess a complete
copy of Harry Potter and the Philosopher’s Stone. Then, you’re given a
cut-up copy of a book that’s similar, but that has been modified in a few
locations. In fact, in real life the book really was changed between its
initial release in the United Kingdom and its release in the United States.
One change especially stands out, which is that the word Philosopher in
the title was changed to Sorcerer, so the title became Harry Potter and
the Sorcerer’s Stone. All through the book “philosopher” was replaced
by “sorcerer”—presumably, the publisher believed the book would have
greater appeal in the United States this way. It’s pretty obvious that
having the complete text of the original book to refer to would make it
much easier to figure out the text of the modified book. Instead of having
to laboriously figure out which fragments matched with which, you
could always figure out what part of the book the fragment you’re
currently examining is from. In a similar way, the sequencing of a human
genome can be done faster and more easily by constantly referring back
to the reference genome and the haplotype map.

Incidentally, while the Harry Potter example is fanciful, I can’t resist
mentioning that a very similar technique really was used by the author
Chuck Hansen to write his book U.S. Nuclear Weapons: The Secret
History. Hansen based his history on tens of thousands of declassified
documents that had been sanitized by physically cutting out classified
information. He discovered that different copies of the same document
were sometimes sanitized in different ways, and by comparing different
versions he could sometimes reconstruct the deleted information!

The algorithms I’ve described for genome sequencing are good
examples of data-driven intelligence. In no sense are these algorithms
especially smart. They’re not doing much beyond simple pattern



matching and rearrangement. But by combining these simple algorithms
with enormous data processing power we can solve a problem that an
unaided human being can’t solve at all. Furthermore, by combining data-
driven intelligence with the open data in the human genome and the
HapMap we can simplify the problem of genetic sequencing. This is the
kind of thing we’ll see on a much grander scale when data-driven
intelligence is combined with the data web.

Building the Data Web

Today, the data web is in its very early days. Most data is still locked
up. To the extent data is shared, many different technologies are being
used to do the sharing. The open data sets that are available mostly
remain unconnected to one another, still living inside their separate silos.
In short, the current state of the data web is messy and chaotic and
incomplete. That’s okay: the early days of a new technology are often
messy. Think of how messy and chaotic the early history of aviation was,
in the 1890s and early 1900s, before the Wright brothers first flew.
Dozens of people were pursuing their own ideas about the best way to
build heavier-than-air flying machines. It was out of that mess of ideas
that the first airplanes slowly emerged. In a similar way, today thousands
of people and organizations have their own ideas about the best way to
build the data web. All are aiming in roughly the same direction, but
there are many differences in the details. Perhaps the best-known effort
comes from academia, where many researchers are developing an
approach called the semantic web. In the business world, the state of
affairs is more fluid, as companies try out many different ways of sharing
data. Because of these many approaches, there are passionate arguments
about the best way to build the data web, often carried out with great
conviction and certainty. But the data web is still in its infancy, and it’s
too early to say which approach will succeed. For these reasons, Il use
the term “data web” rather loosely to refer to all open data, taken
together in aggregate. It’s a bit of an exaggeration, since much of that
data isn’t properly linked up, or is hard to find online. But that linking is
coming, and so I’ve taken some license.



If we don’t know what technology will ultimately be used to build the
data web, how can we be sure the data web will grow and flourish? We
can because a large and growing number of people want to share their
data, and to link 1t up with other sources. We’ve seen a little of how this
is happening in science. It’s also true of many businesses and
governments, some of which are making at least some data open. The
website Twitter, for example, makes some of its data openly available,
and this has led to the creation of third-party services such as TwitPic,
which makes it easy to share photos on Twitter, and Tweetdeck, which
offers a streamlined way of using Twitter. As another example, the day
after US President Barack Obama’s inauguration he issued a
memorandum on “Transparency and Open Government.” This
memorandum led to the creation of a website called data.gov, where the
US government shares more than 1,200 open data sets on subjects
ranging from energy use to aviation accidents to television licenses.
Examples such as these are driving the development of technologies to
share data across the greatest number of users. Whichever technology
wins broad adoption will become, by default, the data web. That’s why
we don’t need to know which technological vision of the data web will
win to conclude that the data web is inevitable.

Perhaps the most impressive steps toward the data web to date have
been taken in biology. Biologists are picking off chunks of the biological
world and mapping them out, building toward a unified map of all of
biology. We’ve discussed some of these chunks—the human genome, the
haplotype map, and the just-beginning human connectome. But there are
many more. There are online databases that describe the biological world
at a very small level, for example mapping out protein structure and
function, and the many possible interactions between proteins (the
“interactome”). There are online databases describing the large-scale
biological world, mapping out things such as animal migration patterns,
and even catalogs that attempt to map out all the world’s species. And
there are online databases at every level in between, a plethora of
resources for the description of the biological world. Wikipedia’s list of
biological databases has more than 100 entries as of April 2011. Those
databases can potentially be linked up, to reflect the connections in
biological systems: genetic information is linked to protein information,
which is linked to information about protein interactions, which is linked
to information about metabolism, and so on, all building toward a unified
map of biology.



Services are being developed to mine this nascent biological data web,
sort of a Google-for-biology, able to quickly answer complex questions
about life. Imagine a world of the future where the biological part of the
data web has flourished. Imagine having the genome of newborn
children immediately sequenced, and then correlated with a giant
database of public health records to determine not just what diseases
they’re especially vulnerable to—an old trope of science fiction—but
also what environmental factors might influence their susceptibilities to
disease. “Your son has an 80 percent chance of developing heart disease
in his 40s if he’s sedentary in his 20s and 30s. But with three hours of
moderate exerce each week that probability drops to 15 percent.” As
problems manifest, special drugs can be created, with their design
tailored specifically to individual genetic makeup and past medical
history.

Today, the biological data web is just a prototype. Life has tremendous
complexity at many different levels, and we are just beginning to map
out the biological world. Just settling the basic conceptual categories is
challenging. Take the notion of a gene. Until recently, students were
taught that a gene is part of the DNA that codes for a protein. That seems
simple enough. But, in fact, what scientists mean by a gene is changing,
as we come to better understand the relationship between DNA and
proteins. The early insight that genes code for proteins is incomplete. We
now know that the same sequence of DNA can sometimes be transcribed
in different ways, into different proteins. At the same time, a single
protein may be formed by transcribing DNA from several disconnected
parts of the genome, sometimes even from genetic material on different
chromosomes. These are just two of the many ways in which our notion
of genes is currently changing. More generally, as our understanding of
biology improves, many fundamental concepts are being redefined. And
when that kind of redefinition happens it can have profound implications
for the way we represent knowledge. It’s easy to imagine at some point
in the future a need to radically restructure our databases of knowledge,
as we learn that our old conceptual schemas are wrong, and must be
updated.

What the Data Web Will Mean for Science



As the data web flourishes, it will transform science in two ways.
The first way will be to dramatically increase the number and variety of
scientific questions that we can answer. We’ve already seen how the
SDSS has enabled thousands of new questions in astronomy to be
answered. The more data sources available, and the more richly they’re
linked, the more dramatic the effect will be. Think of the way Google’s
search data and the CDC flu data were combined. With either data set
alone it’s difficult to answer the question “Where is the flu happening,
right now?” But when you have both data sets, you can answer that
question. The result has a magical, free-lunch quality: combine two data
sets and not only can you answer all the questions originally answered by
those data sets, you can also answer surprising new questions that
emerge from relationships between them. As the data web grows, so too
will the number and variety of questions that can be asked. In some
sense, the questions you can answer are actually an emergent property of
complex systems of knowledge: the number of questions you can answer
grows much faster than your knowledge. And the data web aspires to
contain all the world’s knowledge.

The second way the data web will transform science is by changing
the nature of explanation itself. Historically, in science we prize
explanations that are simple. Many of our greatest theories have a rabbit-
out-of-the-hat quality, explaining many apparently different phenomena
through a single core idea. For example, Darwin’s theory of evolution by
natural selection has one simple idea at its core, yet it is an astonishingly
powerful framework for understanding the evolution of life. As another
example, Einstein’s general theory of relativity has been beautifully
summarized in a single sentence, by the physicist John Wheeler:
“Spacetime tells matter how to move; matter tells spacetime how to
curve.” That simple idea, when expressed mathematically, explains all
gravitational phenomena, from the flight of a thrown ball, to the motion
of the planets, to the origin of the universe. It’s a miracle of explanation,
and many scientists (myself included) experience an epiphany when first
we understand it.

But some phenomena don’t have simple explanations. Think about the
problem of translating Spanish into English. These languages contain a
great deal of accidental complexity, as a result of all the contingencies in
their historical genesis. To make high-quality translations we have no
choice but to deal with all that complexity. In everyday life translators do
this in part through a wealth of knowledge about the details of the



languages, and in part through hard-to-describe intuition, built up over
years of exposure to both languages. Any really precise explanation of
how to translate from Spanish to English will necessarily be quite
complex, and certainly won’t have the simplicity of the theory of
evolution or the general theory of relativity.

Until recently, the complexity of the scientific explanations we use
was constrained by the limitations of our own minds. Today, this is
changing, as we learn how to use computers to build and then work with
extremely complex models. To explain the change, let me give an
example from the field of machine language translation. Starting around
1950, researchers began building computerized systems whose aim was
to automatically translate from one language to another. Unfortunately,
the early systems weren’t very good. They tried to do the translation
using clever, relatively simple models based on the rules of grammar and
other rules of language. This sounds like a good idea, but despite a lot of
effort, it never worked very well. It turns out that human languages
contain far too much complexity to be captured in such simple rules.

In the 1990s researchers in machine translation began trying a new
and radically different approach. They threw out the conventional rules
of grammar and language, and instead started their work by gathering an
enormous corpus of texts and translations—think, say, of all the
documents from the United Nations. Their idea was to use data-driven
intelligence to analyze those documents en masse, trying to infer a model
of translation. For instance, while analyzing the corpus the program
might notice that Spanish sentences containing the word “hola” often
have the word “hello” in their English translation. From this, the
program would estimate a high probability that the word “hola” results in
the word “hello” in the translated text, while the probability for English
words unrelated to “hola” (“tiger,” “couch,” and “January,” for example)
would be much lower. The program would also examine the corpus to
figure out how words moved around in the sentence, observing, for
example, that “hola” and “hello” tend to be in the same parts of the
sentence, while other words get moved around more. Repeating this for
every pair of words in the Spanish and English languages, their program
gradually built up a statistical model of translation—an immensely
complex model, but nonetheless one that can be stored on a modern
computer. I won’t describe the models they used in complete detail here,
but the hola-hello example gives you the flavor. Once they had analyzed
the corpus and built up their statistical model, they used that model to
translate new texts. To translate a Spanish sentence, the idea was to find



the English sentence that, according to the model, had the highest
probability. That high-probability sentence would be output as the
translation.

Frankly, when 1 first heard about statistical machine translation I
thought it didn’t sound very promising. I was so surprised by the idea
that I thought I must be misunderstanding something. Not only do these
models have no understanding of the meaning of “hola” or “hello,” they
don’t even understand the most basic things about language, such as the
distinction between nouns and verbs. And, it turns out, my skepticism is
justified: the approach doesn’t work very well—if the starting corpus
used to infer the model contains just a few million words. But if the
corpus has billions of words, the approach starts to work very well
indeed. Todayj, this is the way the best machine translation systems work.
If you’ve ever done a Google search that returned a result in a foreign
language, you’ll notice that Google offers to “translate this page.” These
translations aren’t done by human beings, or by special algorithms
handcrafted with a detailed knowledge of the languages involved.
Instead, Google uses an incredibly detailed statistical model of how to do
translation. It’s far from perfect, but today it’s the best automated
translation system around. Shortly after launching their translation
service, Google easily won an international competition for English-
Arabic and English-Chinese machines translations. What’s truly
remarkable 1s that no one on the Google Translate team spoke Chinese or
Arabic. They didn’t need to. The system could learn to translate by itself.

These translation models are in some sense theories or explanations of
how to translate. But whereas Darwin’s theory of evolution can be
summed up in a few sentences, and Einstein’s general theory of relativity
can be expressed in a single equation, these theories of translation are
expressed in models with billions of parameters. You might object that
such a statistical model doesn’t seem much like a conventional scientific
explanation, and you’d be right: it’s not an explanation in the
conventional sense. But perhaps it should be considered instead as a new
kind of explanation. Ordinarily, we judge explanations in part by their
ability to predict new phenomena. In the case of translation, that means
accurately translating never-before-seen sentences. And so far, at least,
the statistical translation models do a better job of that than any
conventional theory of language. It’s telling that a model that doesn’t
even understand the noun-verb distinction can outperform our best
linguistic models. At the least we should take seriously the idea that
these statistical models express truths not found in more conventional



explanations of language translation. Might it be that the statistical
models contain more truth than our conventional theories of language,
with their notions of verb, noun, and adjective, subjects and objects, and
so on? Or perhaps the models contain a different kind of truth, in part
complementary, and in part overlapping, with conventional theories of
language? Maybe we could develop a better theory of language by
combining the best insights from the conventional approach and the
approach based on statistical modeling into a single, unified explanation?
Unfortunately, we don’t yet know how to make such unified theories.
But it’s stimulating to speculate that nouns and verbs, subjects and
objects, and all the other paraphernalia of language are really emergent
properties whose existence can be deduced from statistical models of
language. Today, we don’t yet know how to make such a deductive leap,
but that doesn’t mean it’s not possible.

What status should we give to complex explanations of thisype? As
the data web i1s built, it will become easier and easier for people to
construct such explanations, and we’ll end up with statistical models of
all kinds of complex phenomena. We’ll need to learn how to look into
complex models such as the language models and extract emergent
concepts such as verbs and nouns. And we’ll need to learn how to cope
with the fact that sometimes those emergent concepts will only be
approximate. We’ll need, in short, to develop more and better tools for
extracting meaning from these complex models.

With all that said, it still seems intuitive that simple explanations
contain more truth than complex explanations. This prejudice against
complex explanations in science is so ingrained that it even has a name:
we call it Occam’s razor. The idea is that if we have two alternate
explanations for the same phenomenon, we should prefer the simpler
explanation. This belief is also reflected in other ways. When we come
up with a single, simple explanation that explains a wide variety of
apparently disparate phenomena, we’re inclined to think that it’s true. We
shout “Eureka,” we’ve found it, when something that seemed complex
turns out to have a simple explanation. Think of Newton’s amazing
discovery that his laws of gravitation explain both how objects fall on
Earth, and also the motion of the planets around the sun. Before
Newton’s discovery, those phenomena seemed completely separate from
one another: how remarkable that the same laws explain both!

Our confidence in the truth of simple explanations is so great that
when we discover apparent violations of such an explanation, we may go
to great lengths to save it. In the 1970s the astronomer Vera Rubin



discovered that stars toward the outer reaches of our Milky Way galaxy
are rotating around the center of the galaxy much faster than we’d expect
on the basis of our best theory of gravity, the general theory of relativity.
But rather than give up on general relativity, most astronomers instead
prefer to postulate the existence of invisible dark matter permeating the
galaxy. If the distribution of dark matter is just right, then general
relativity can correctly account for the speed of stars on the outer edges
of the galaxy. By comparison to the popularity of dark matter, new
theories of gravity have been pursued by relatively few astronomers.

So far I’ve made little distinction between conventional explanations
and complex models. This blithe conflation of the two has perhaps
bothered some readers. Many people believe there is a hard and fast
distinction between an explanation and a model: explanations contain
some element of the truth, while models are merely convenient crutches,
useful for illuminating some phenomenon, but ultimately not expressing
the truth. This point of view has an intuitive appeal, but in the history of
science the distinction between models and explanations is blurred to the
point of nonexistence. Ideas that start out as “mere” models often contain
the seed of truths that surprise even their originators. In 1900 the
physicist Max Planck was trying to understand how the color and
intensity of light emitted by an object depend upon its temperature. For
example, burning coals at first glow red, but as the coals heat up, they
change color and will eventually glow blue. Figuring out the relationship
between temperature and color was a puzzle because the best physical
theories of the day gave two different answers, both of which were
contradicted by experiment! Planck tried many ideas to solve the
problem, eventually settling on a model in which he made the ad hoc
assumption that the energy associated with light must ity in quantized
packets, that is, must be a multiple of some basic unit. This was an
arbitrary assumption, and Planck himself later said, “I really did not give
it much thought”—it was just a trick that led him to the result he wanted.
In fact, it turned out that the idea in Planck’s model was ultimately the
seed for one of the great discoveries of science, the theory of quantum
mechanics. So should we regard Planck’s ideas as merely a model, or as
an explanation? At the time, it looked like a model, but that model
contained a truth deeper than any of the theories of the day. In any
reasonable accounting, Planck’s ideas are both a model and an
explanation: models and explanations are both part of the same
continuum. And so, as online tools enhance our ability to construct and



extract meaning from complex models, they will also change the nature
of scientific explanation.



CHAPTER 7



Democratizing Science

On August 7, 2007, a 25-year-old Dutch schoolteacher named Hanny
van Arkel was surfing the web when she came across the Galaxy Zoo
website. As you may recall from the opening chapter, Galaxy Zoo
recruits volunteers to help classify galaxy images. The volunteers are
shown photographs of galaxies—often, galaxies no human has ever
before seen—and asked to answer questions such as “Is this a spiral or
an elliptical galaxy?” or “If this is a spiral, do the arms rotate clockwise
or anticlockwise?” It’s a kind of cosmological census, the largest ever
undertaken, with more than 200,000 volunteers so far classifying more
than 150 million galaxy images. When she came across Galaxy Zoo, van
Arkel was immediately hooked, and she began classifying galaxies in her
spare time. A few days after joining, she noticed a strange blue blob
hovering just below one of the galaxies. What she saw is reproduced on
the next page, in black and white, with an arrow pointing to the blob.

Puzzled, on August 13 she posted a note to Galaxy Zoo’s online
forum, asking if anyone knew what the blue blob might be.

No one knew.

Tests were done. The blob wasn’t some kind of blemish in the
photograph, it was real. Observations were made at other telescopes to
get more detailed information, including observations with the powerful
William Herschel telescope in the Canary Islands. Those observations
showed that the blue blob was at about the same distance from the Earth
as the galaxy hovering above it, which meant the blob was enormous,
tens of thousands of light-years in diameter. More experts were called in,
none of whom had ever seen anything like it.



Figure 7.1. A black and white reproduction showing the strange blob
first noticed by Hanny van Arkel. In the original color image the blob
was a striking blue, and contrasted vividly with the galaxy above. Credit:
Sloan Digital Sky Survey.

The mystery mounted. More and more people began speculating about
what the blue blob could be. The object was dubbed Hanny’s Voorwerp,
after the discoverer and the Dutch word for object.

Slowly, an explanation of the voorwerp took shape, an explanation
connecting the voorwerp to the staggeringly bright objects known as
quasars. To understand that explanation, we first need to back up a bit
and talk about quasars. As you may know, quasars are among the
strangest and most mysterious objects in the universe. They are
incredibly bright: a quasar the size of our solar system can shine as
brightly as a trillion suns, outshining a giant galaxy like our Milky Way
many times over. Fortunately for us, the nearest quasars are hundreds of
millions of light-years away—if a quasar turned on a few light-years
away, it would fry the Earth.

When quasars were first discovered, in 1963, it was a mystery how
such comparatively small objects could shine so brightly. It took



astronomers and astrophysicists many years to understand and agree on
what is going on, but by the 1980s it was widely accepted that quasars
are powered by solar system—sized black holes at the center of galaxies.
Those black holes devour surrounding matter—stars, dust, you name it—
while other matter swirls around the black hole, not quite falling in, but
accelerated to near the speed of light. That enormous acceleration
produces vast quantities of energy, some of which is emitted as light. It’s
that light that we see on Earth as the quasar. But while this rudimentary
picture of quasars is now widely accepted, many fundamental questions
remain unanswered.

With that understanding of quasars in mind, let’s come back to the
voorwerp. As the people at Galaxy Zoo puzzled over what the voorwerp
might be, they considered many possible explanations, and gradually
closed in on a simple explanation that seemed to fit all the facts: the
voorwerp is a quasar mirror. The idea is that about 100,000 years ago,
the galaxy near the voorwerp contained a quasar. That quasar has since
switched off, for reasons unknown, and we no longer see it. But while
the quasar was still shining, the light from the quasar was heating up gas
inside a nearby dwarf galaxy, and causing it to glow. It’s that glowing
gas that we now see as a blue blob, and that’s why we can think of the
voorwerp as a quasar mirror. In fact, it’s really a huge collection of
mirrors, distributed over a vast region of space, echoing the light of the
quasar at many different times in its history. Of course, I’'m using the
term “mirror” loosely here, since the light from the voorwerp isn’t
reflected light, but is instead the glow of heated gas. It’s a sort of light
echo from the quasar.

Not all astronomers and astrophysicists find the quasar mirror
explanation convincing. To some, it seems a bit too convenient that the
quasar has switched off. Another group has put forward an alternative
explanation for the voorwerp, involving a different type of source in the
nearby galaxy, a source that is also black hole—-powered, but that is not a
quasar. This presumed source is called an active galactic nucleus (AGN).
It’s a super-massive black hole that’s emitting what’s called a jet, a
narrow cone of plasma tens of thousands of light-years long. By chance
the jet is aimed in the direction of the voorwerp. The jet heats up the gas
in the voorwerp and causes it to glow. So in this explanation the
voorwerp isn’t a quasar mirror, it’s an AGN mirror (again, loosely
speaking)!

As I write, astronomers and astrophysicists are still trying to figure out
which explanation is correct. But regardless of which explanation is



correct, or even if some ohasexplanation is needed, the voorwerp is
fascinating. Suppose, for instance, that it really is a quasar mirror. As
we’ve seen, this means that the voorwerp is a huge collection of mirrors,
echoing the light of the quasar at many different times over the quasar’s
lifetime. That means light from the voorwerp is a bit like a biography of
the quasar, and by examining the voorwerp very closely we may learn a
lot: how the quasar lived, how it died, and maybe even how it was born.
That makes the voorwerp tremendously important as a way of studying
the life cycle of quasars. Similarly, if the voorwerp is really shining
because of a jet from an AGN, studying the voorwerp will be a great way
of learning more about AGNSs. In either case, astronomers are excited by
the possibilities, and plan follow-up investigations aimed at getting a
more detailed picture of the voorwerp. Observation time has been
obtained on some of the world’s most in-demand telescopes, including
the Hubble and other space-based telescopes. From these and other
observations we will learn more about the voorwerp, and perhaps about
quasars or active galactic nuclei, too. The story of the voorwerp is just
beginning.

Redefining Science’s Relationship to Society

We take it for granted that science is for the most part done by
scientists. Part of what makes Hanny’s Voorwerp exciting is that it
violates this assumption. How remarkable that a 25-year-old
schoolteacher has discovered this great and beautiful cloud of gas! How
unexpected that an amateur could make a discovery that might change
our understanding of quasars or active galactic nuclei! When the
discovery of the voorwerp was announced, it was a media story all over
the world, receiving coverage on CNN and the BBC, in The Economist,
and in many other major media outlets. Although I was delighted for
Hanny van Arkel and the Galaxy Zoo team, as a writer my first feeling
about all this publicity was a certain selfish disappointment, thinking that
I would need to remove the voorwerp from my book, and replace it with
a fresher example. But after more thought 1 decided to leave the
voorwerp in: the media splash itself illustrates just how strongly we take
it for granted that science is done by scientists, and how fascinated we



are by exceptions to this rule. The headline at CNN says it all: “Armchair
Astronomer Discovers Unique ‘Cosmic Ghost.” ” What a shock and
surprise that a nonscientist could make a significant astrophysical
discovery!

Galaxy Zoo and the voorwerp are part of a bigger story about how
online tools are gradually changing the relationship between science and
society. One of the most fertile areas where this is happening is citizen
science, with projects such as Galaxy Zoo recruiting online volunteers to
help make scientific discoveries. In the first half of this chapter, we’ll
look at citizen science in depth, seeing how it changes who can be a
scientist, and how it enables new types of scientific problem to be
attacked. But citizen science is not the only way online tools are
changing the relationship between science and society. In the second half
of the chapter, we’ll look at other new bridging institutions enabled by
online tools, and consider how such institutions may change the role of
science in public debate and decision making. This discussion perhaps
seems tangential to the main theme of the book, since it doesn’t directly
relate to how scientists make discoveries. But over the long run these
social changes may greatly alter the context in which science is done,
and it’s worth exploring them in some depth. First, let’s return to
examine Galaxy Zoo in more detail.

Galaxy Zoo Revisited

I can honestly say that Galaxy Zoo is the best thing I’ve ever
done. . . . I don’t know quite what it 1s, but Galaxy Zoo does
something to people. The contributions, both creative and academic,
that people have made to the forum are as stunning as the sight of
any spiral, and never fail to move me.

—Alice Sheppard, volunteer Galaxy Zoo moderator

Galaxy Zoo began in 2007, with two scientists at Oxford University,
Kevin Schawinski and Chris Lintott. As part of his PhD work,
Schawinski was looking at photos of galaxies. Galaxies come in many
shapes and sizes, but most galaxies are either spiral galaxies, like our
own Milky Way, or else elliptical galaxies, roughly spherical balls of
stars and gas. Conventional wisdom in 2007 held that most of the stars in
elliptical galaxies are very old stars, getting up toward 10 billion years in
age. When stars get old, they will often change color and size, turn into
red giants, with the result that many elliptical galaxies have a reddish



tinge when compared with spiral galaxies, which are younger, and
contain many newly formed blue stars.

Schawinski suspected that the conventional wisdom was wrong, that
some elliptical galaxies might not be so old after all, and there might be a
lot of star formation going on inside them. To test his suspicion,
Schawinski spent a week poring over photos of 50,000 galaxies from the
Sloan Digital Sky Survey (SDSS), looking to see which of the galaxies
were elliptical and which were spiral. As I mentioned in the opening
chapter, distinguishing elliptical and spiral galaxies is something humans
still do better than computers. Once he finished the classification
Schawinski used a computer program to analyze each elliptical galaxy, to
see how red or blue it was. As he had suspected, the results suggested
that the conventional wisdom was wrong, that star formation was going
on in some ellipticals. Unfortunately, the effect was weak, and he needed
to analyze a much larger sample of galaxies to really nail it down.
Fortunately, as we discussed in the last chapter, the SDSS had made
images of 930,000 galaxies openly available. This was a promising but
daunting resource. Classifying the first 50,000 galaxies had involved a
heroic weeklong effort by Schawinski—to classify 50,000 galaxies over
seven 12-hour working days requires classifying an image every six
seconds! Even at that tremendous pace, it would take many months to
classify 930,000 galaxies. And there’s no way Schawinski could
maintain that pace. Even if he devoted most of his working time to the
classification, it would take years.

One day in March of 2007, Schawinski adjourned to the Royal Oak, a
pub in Oxford, together with a postdoctoral scientist who had recently
arrived at Oxford, Chris Lintott. Over a pint they considered a wild idea
for classifying the SDSS photos. Instead of doing the classification work
themselves, perhaps they could build a website that would invite
members of the general public to help out. They dragooned some friends
who worked as web developers to help build the site, and on July 11,
2007, the Galaxy Zoo site went live with an announcement on BBC
Radio 4’s Today program.

The response to the announcement of Galaxy Zoo dwarfed expections,
overwhelming and quickly crashing the new website. For the next six
hours the Zookeepers running the site worked frantically to get the site
back up and running. When the site finally reappeared, volunteers
rapidly began signing up, and by the end of the first day more than
70,000 galaxy classifications were being done every hour—more than
Schawinski had managed in his heroic week. Each galaxy was examined



independently by many volunteers, enabling the Zookeepers to
automatically identify and discard incorrect classifications. This made
the results comparable to careful classification by professional
astronomers. Although the rate of galaxy classification gradually slowed
from its peak of 70,000 per hour, Galaxy Zoo’s first classification of
galaxies was complete after just a few months. That gave Schawinski the
data he needed to finish his project. Verdict: yes, the conventional
wisdom about spirals versus ellipticals was wrong, and some ellipticals
really do contain a lot of newly formed stars.

Galaxy Zoo began with Schawinksi’s questions, but over time the site
has expanded to address a much broader range of questions. Many
discoveries have been made serendipitously, when some Zooite (as the
participants call themselves) has noticed something unusual in a photo,
as in Hanny van Arkel’s discovery of the voorwerp. A second, more
complex example of serendipitous discovery is the story of the “green
pea” galaxies. This story illustrates the potential of citizen science even
better than the voorwerp, and so I’ll recount it here. Incidentally, my
account draws on a marvelous article written by one of the Zooites, Alice
Sheppard, which you can find referenced in the “Notes” at the end of the
book.

On July 28, 2007, two weeks after the Zoo first opened, a poster to the
Galaxy Zoo forum named Nightblizzard posted a picture of a fuzzy
green galaxy, noting that it was unusual for galaxies to be green. A
couple of weeks later, on August 11, 2007, someone else posted a picture
of a strange green galaxy. It was unusually bright, and the poster, named
Pat, asked if the galaxy might be a quasar. No one was quite sure.

The next day, on August 12, a third poster, the ubiquitous Hanny van
Arkel, found another of the strange green galaxies. Van Arkel dubbed the
galaxy a “green pea,” and posted it to the forum with a message titled
“Give peas a chance!” Other Zooites thought this was hilarious, and
started to dig up peas of their own, adding them to the “pea soup” taking
shape on the forum. For several months the discussion thread grew. At
first it was mostly people adding objects, or making pea jokes (“peas
stop”). But people also asked thoughtful questions. What exactly were
the peas? Why hadn’t anyone heard of them before? One poster
commented: “They talk about stars, galaxies, nebulae, planets, etc. in
astronomy courses, but they never mention the peas. It must be a big
secret among professional astronomers. They probably want all the peas
for themselves to eat.”



At first, pea collection was just a fun hobby for the Zooites. But as the
collection of peas grew, so too did the mystery surrounding them. Some
turned out to be ordinary stars or nebulae. But a few of the green
galaxies still stood out as unusual. The Zooites figured out—I’ll describe
how shortly—that some of the pea galaxies were surrounded by
incredibly hot, ionized oxygen gas. That was unusual for a galaxy. What
were these small, green, highly luminous galaxies, surrounded by hot,
ionized oxygen? And why had nobody ever heard of them before?

Let me pause here to explain how the Zooites figured out that the peas
were surrounded by hot, ionized oxygen. It’s an interesting piece of
science, and illustrates just how serious some of the Zooites were
becoming. Obviously, they couldn’t determine that oxygen was present
by going and visiting one of the galaxies. Instead, they figured it out by
teaching themselves a technique called spectral analysis. We don’t need
to go into the details of how spectral analysis works, but the basic idea is
quite simple. It’s based on what’s called the spectrum of a galaxy. What
the spectrum shows is how the light from a galaxy breaks up into
different colors—say, a little bit of red, a lot of green, and a dash of blue.
In fact, the spectrum can even show (for example) that the light is a
mixture of several slightly different shades of green, exactly what shades
those are, and their respective proportions. So the spectrum is a very
detailed and precise way of breaking down galaxy images into their
different colors.



Figure 7.2. The first of the green pea galaxies, found by Galaxy Zoo
forum member Nightblizzard in July, 2007. The green pea is in the
center. Like all of the peas, it looks quite nondescript, and if you’re not
familiar with galaxies, it’s tempting to think it’s just another elliptical
galaxy, or maybe a star. But many of the Zooites became quite expert at
analyzing galaxy images, and it wasn’t long before they realized the peas
were unusual. Credit: Sloan Digital Sky Survey.

The reason the spectrum of a galaxy is important is because it allows
astronomers to figure out what the galaxy is made of. This may sound
surprising, but again the idea is quite simple: when you heat up a
material, say, sodium, it tends to glow with a particular mixture of colors.
That’s why sodium streetlamps glow with a very particular yellow-
orange color. It turns out that every material—not just sodium, but
oxygen, hydrogen, carbon, and any other—has its own unique spectrum,
that is, glows with a characteristic mixture of colors. The spectrum of a
material is thus a bit like a signature, and by looking closely for such
signatures in a galaxy’s spectrum it’s possible to figure out what the
galaxy is made of. It’s one of the more remarkable discoveries of
science: by looking carefully at the color of distant objects we can figure



out what they’re made of, and even how hot they are, since heating a
material up changes its characteristic spectrum slightly. The SDSS made
high-quality spectra available for all Galaxy Zoo galaxies, and it was by
looking closely at the spectrum of the green peas that the Zooites figured
out that some of the peas were surrounded by hot, ionized oxygen gas.

(I can’t resist digressing to mention the marvelous fact that the
substance helium was actually discovered using spectral analysis! In
1868, the astronomers Pierre Jules César Janssen and Joseph Norman
Lockyer independently observed that the spectrum of the sun had
features unlike any substance ever seen on Earth. They deduced,
correctly, that they were seeing the first sign of a new chemical
substance. But it wasn’t until almost 30 years later that a chemist named
William Ramsay discovered helium on Earth.)

Enough about spectral analysis; back to Galaxy Zoo and the mystery
othat theeas. By this point—December 12, 2007—Zookeeper Kevin
Schawinski had become intrigued by these strange galaxies. He decided
to take a closer look at the peas. He ran some tests and quickly
confirmed that they were indeed a new type of galaxy.

You might think the professional astronomers would now move in and
take over the project. After all, the amateurs at Galaxy Zoo had just
discovered an entirely new class of galaxy! But the pros, including
Schawinski, were busy with other things, including Hanny’s Voorwerp,
and they didn’t take over straight away. Instead, what happened next was
a remarkable piece of science driven by the amateurs. The tone was set
by a Zooite named Rick Nowell. Nowell went back through all the pea
images that had been posted to the Galaxy Zoo forum, and systematically
identified 39 objects that looked like they might be the new type of
galaxy. Inspired by Nowell’s list, other people started to make their own
lists, and began debating what criteria should be used to distinguish this
new type of galaxy from similar-looking objects, such as green stars. The
tone of the project began to change, becoming focused on getting to the
bottom of the pea mystery. People found red galaxies with characteristics
similar to the green peas, but further away. More and more, the
discussion focused on detailed properties of the galaxies’ spectra, and
several of the Zooites became quite adept at spectral analysis—the kind
of expertise usually the province of professional astronomers.

The back-and-forth discussion of ideas at this stage was astonishing.
I’d like to give a blow-by-blow account, but it would take far too long
even to summarize here—this isn’t a book about how to discover and
understand a new type of galaxy! But what was especially remarkable



about the discussion was its style. It’s the kind of discussion any scientist
recognizes. Scientific discoveries often begin with a bit of a mystery,
vague suspicions, and some half-baked ideas—just like the initial vague
suspicion that the green peas might be a new type of galaxy. That initial
suspicion is gradually refined. New ideas are introduced, tested,
improved, and sometimes discarded. Participants become obsessed, as
their suspicions slowly turn into hard, detailed fact. This is the process of
research, familiar to any research scientist, and it’s exactly what you see
in the Galaxy Zoo discussion of the green peas. It’s eerily reminiscent of
the discussions in the Polymath Project. The Zooites may be amateurs—
they know far less about astronomy than many of the polymaths do about
mathematics, and there is more levity in the Galaxy Zoo discussion—but
underneath these differences, there i1s the same fertile sense of ideas
growing and being refined, of a conviction that there is something here
to be known, and a determination to get to the bottom of it. The Zooites
don’t have the credentials of some of the polymaths. But they are
scientists.

As the Zooites gradually developed more precise criteria
characterizing the green pea galaxies, they also became more
sophisticated in how they found candidate images. No longer were they
just sifting through Galaxy Zoo images by hand. Instead, they went to
the original SDSS data, and developed sophisticated database queries
that automatically searched the entire SDSS data set for galaxies that fit
their criteria. Those candidates were then closely scrutinized by
volunteers, and a list of 200 or so drawn up that seemed likely to be the
new type of pea galaxy.

The professionals watched all this discussion wit interest, and in early
July of 2008 Schawinski, now a postdoctoral scientist at Yale University,
and a Yale student named Carolin Cardamone decided to ramp up their
involvement. In collaboration with the Zooites, Cardamone and
Schawinski began detailed spectral analyses of the peas using
sophisticated computer software. Over the next nine months they
completed the work begun by the Zooites. The picture of the peas that
emerged showed that they were, indeed, a new type of galaxy. They were
ultra-compact, less than 10 percent the mass of our Milky Way galaxy,
and forming stars very quickly—whereas the Milky Way produces just
one or two new stars every year, the peas produce more like 40 new stars
per year, despite being far smaller. And the galaxies were extremely
bright for their size.



The green peas and the voorwerp are just two of the many discoveries
made by Galaxy Zoo. Another Galaxy Zoo project was to search out
images of merging galaxies (see the image on the next page). Mergers
are life-changing events for galaxies, and so understanding mergers is of
great interest to astronomers and astrophysicists. Our own Milky Way is
currently merging with several small dwarf galaxies, and has been
predicted to one day merge with the giant Andromeda galaxy, currently
two million light-years away. Unfortunately, despite their importance,
merging galaxies aren’t so easy to find, and as a result most studies of
mergers use samples containing only a few dozen merging galaxies. The
Galaxy Zoo merger project quickly found 3,000 merging galaxies, a
treasure chest of mergers for future studies. Other objects the Zooites
have gone hunting for include gravitational lenses (objects whose gravity
actually warps and focuses the light from objects that are farther away),
and paired galaxies (galaxies that appear to be on top of one another, but
where one galaxy is actually much closer than the other). There’s even a
voorwerp project, and the Zooites have successfully hunted down several
more VOOrwerps.

In all, Galaxy Zoo has been used to write 22 scientific papers, on a
wide variety of topics, and many more papers are on the way. The
discoveries are sometimes serendipitous, as in the case of the voorwerp,
and sometimes based on systematic analysis, as in the mergers project.
Sometimes serendipity is followed up with extensive systematic analysis,
as in the study of the green peas. Follow-up projects Galaxy Zoo 2 and
Galaxy Zoo: Hubble have launched, and are providing even more
detailed information about some of the galaxies observed by the SDSS,
and also by the Hubble Space Telescope. Other new projects from the
team that started Galaxy Zoo include Moon Zoo, which aims to better
understand the craters on the moon, and Project Solar Storm Watch,
which aims to spot explosions on the sun. One of the astronomers
involved in Galaxy Zoo 2, Bob Nichol of the University of Portsmouth,
contrasted Galaxy Zoo with everyday astronomy in this way:



Figure 7.3. Two merging spiral galaxies (known jointly as UGC
8335). Credit: NASA, ESA, the Hubble Heritage (STScl/AURA)-
ESA/Hubble Collaboration, and A. Evans (University of Virginia,
Charlottesville/NRAO/Stony Brook University).

[In my everyday work] I can ask the question “how many
galaxies have a bar through the middle of them” and typically I
would embark on a career-long quest to answer this fundamental
question. I may even recruit some poor graduate student to eyeball
50,000 galaxies to answer the question (like they did with Kevin!).
But now, two dayafter the launch [of Galaxy Zoo 2], we already
have the data to address this question and it’s a little too fast for an
old-timer like me. . . . The internet is clearly the revolutionary
technology of this generation of astronomer. . . . Galaxy Zoo is an
amazing demonstration of how powerful this new tool can be
[when] used to address new questions.



Like a computer, Galaxy Zoo can find patterns in large data sets, data
sets far beyond the comprehension of any single individual. But Galaxy
Zoo can go beyond computers, because it can also apply human
intelligence in the analysis, the kind of intelligence that recognizes that
the voorwerp or a green pea galaxy is out of the ordinary, and deserves
further investigation. Galaxy Zoo is thus a hybrid, able to do deep
analyses of large data sets that are impossible in any other way. It’s a
new way of turning data into knowledge. Time and again, the
Zookeepers meet new astronomers who say that their work could be
aided by Galaxy Zoo, and more than twenty astronomers are now using
Galaxy Zoo as a way of studying a broad range of astronomical
questions. Galaxy Zoo is rapidly becoming a general-purpose platform
connecting professional astronomers to interested members of the
general public, so they can do science together.

When Amateurs Rival Professionals

It’s not just in astronomy that citizen science 1s useful. One of the big
open problems in biology is to understand how the genetic code gives
rise to an organism’s form. Of course, we’ve all heard many times that
DNA is the “blueprint for life.” But even though the slogan is familiar—
it 1s, after all, the fate of great slogans to become cliches—that doesn’t
mean anyone yet understands in detail how DNA gives rise to life.
Suppose biologists had never seen an elephant’s trunk. Could they look
into an elephant’s DNA and somehow see the trunk there—that is,
predict the trunk’s existence based solely on the sequence of base pairs in
an elephant’s genetic code? Today, the answer to this question is no: how
DNA determines an organism’s form is one of the mysteries of biology.

To help solve this mystery, a citizen science project called Foldit is
recruiting online volunteers to play a computer game that challenges
them to figure out how DNA gives rise to the molecules called proteins.
That challenge may sound a far cry from deducing the existence of the
elephant’s trunk—it is a far cry—but it’s a crucial step along the way,
because proteins carry out many of the most important processes in our
bodies. Aside from its intrinsic scientific interest, Foldit is also
interesting as a demonstration of the great complexity of work that can



be done by volunteers. In Galaxy Zoo, participants mostly carry out
simple tasks, such as classifying a galaxy as spiral or elliptical. In Foldit,
players are asked to tackle tasks that would challenge a biochemistry
PhD. And, as we’ll see, the top Foldit players are doing those tasks
extraordinarily well.

Before we discuss Foldit in detail, let’s talk a bit about proteins in
general. Biologists are obsessed by proteins, and with good reason:
they’re molecules that do everything from digesting our food to
contracting our muscles. A good example of a protein is the hemoglobin
molecule. Hemoglobin is one of the main components in our blood: it’s
the molecule our bodies use to move oxygen from our lungs to the rest of
our body. Another important class of proteins are the antibodies in our
immune system. Each antibody has its own special shape that lets it lock
on to viruses and other intruders in our body, tagging them for attack by
our immune system.

At present we only partially understand how DNA gives rise to
proteins such as hemoglobin. What we do know is that certain sections
of our DNA are protein coding, meaning that they describe a specific
protein. So, for example, there’s a protein-coding section for hemoglobin
somewhere in your DNA. That region is a long string of DNA bases,
which starts: CACTCTTCTGGT. . . . It turns out to be helpful to divide
that string of bases into triplets, which are called codons: CAC TCT TCT
GGT. . .. The way proteins are formed is that each codon in the protein-
coding section of your DNA is transcribed into a corresponding molecule
in the protein called an amino acid. So, for example, the first codon for
hemoglobin, CAC, gets transcribed into an amino acid known as
histidine. I won’t explain exactly what histidine is, or what it does—for
us it doesn’t much matter. What matters is that everywhere the CAC
codon appears in the DNA sequence for hemoglobin (or any other
protein), it gets transcribed to histidine. In a similar way, the second
codon, TCT, gets transcribed into the amino acid serine. And so on. The
resulting protein is a chain containing all those amino acids—so
hemoglobin is a chain containing histidine, serine, and so on.

Okay, so far, so good: DNA can be used as a recipe for generating
proteins. Proteins, however, differ from DNA in that they each have their
own special shape, unlike the completely regular structure of DNA. That
shape is tremendously important. For example, as I mentioned before,
the antibodies in our immune system are proteins, and the shape of an
antibody determines which viruses it can lock onto. What’s going on is
that as the information in the DNA is transcribed to form the amino acids



in the protein, the protein “folds” into its shape. How this folding occurs
is still only partially understood, but there are some basic rules of thumb
that should give you the flavor of what’s going on. Some amino acids
like to be near water—they’re called hydrophilic, from the Greek roots
“hydro” and “philia,” for water and love, respectively. Since proteins
inside a cell are surrounded by water, the protein will tend to fold so the
hydrophilic amino acids sit on the outside, near the water. Histidine and
serine are both examples of hydrophilic amino acids. By contrast,
hydrophobic amino acids—amino acids that don’t like water—end up
bundled up tight inside the protein. Sometimes these tendencies conflict:
neighboring amino acids in the protein may be alternately hydrophobic
and hydrophilic, with the result that the protein can end up folding into a
very complex shape.

There’s an incredibly clever trick here that nature is using. The DNA
1s a completely regular arrangement of information, which makes it both
easy to copy and relatively straightforward to transcribe into amino
acids. But then competition between hydrophilia, hydrophobia, and other
forces means that the protein can fold up to form complex shapes. By
changing the DNA we can change the amino acids in the protein, which
in turn causes the shape of the protein to change. What’s clever about
this is that it takes us from the regularly arranged information in the
DNA, which is easily copied, to the many possible shapes of the protein.
A priori, shapes don’t seem so easy to copy. It’s as though you could
trace Si the blueprint for a house, and the traced version would then
somehow spring into existence as a tiny model house. The DNA-protein
connection 1s Nature’s way of making easy the seemingly impossible
task of copying complex shapes.

But there’s a problem with this neat story. Just because we know the
DNA sequence for a protein doesn’t mean we can easily predict what
shape the protein has, or what the protein will do. In fact, today we have
only a very incomplete understanding of how proteins fold. Complete
structures—the exact shapes—are known for only 60,000 proteins,
despite the fact that we know the DNA sequences for millions of
proteins. Most of those complete structures have been found using a
technique called X-ray diffraction—basically, shining X-rays at a protein
and figuring out its shape by looking carefully at the X-ray shadow it
casts. It’s slow, expensive, painstaking work, and the techniques are only
gradually getting better. What we’d really like is a fast and reliable way
to predict the shape from the genetic description. If we could do that,
cutting out the slow and expensive X-ray diffraction step, we’d go from



knowing the shape of 60,000 proteins to knowing the shape of millions.
Even more significantly, such a method would be a tremendously
powerful tool for helping us design proteins with desired shapes. This
would, for instance, help us engineer new antibodies to fight disease.

To solve the protein folding problem, biochemists have turned to
computers in an attempt to predict protein shape from the genetic
description. To make their predictions they use the idea that a protein
will eventually fold into its lowest energy shape, much as a ball will roll
to the bottom of a valley between two hills. All that’s needed is good
method for finding the lowest energy shape of a protein. This sounds
promising, but in practice it’s hard to search through all the possible
shapes, looking for the shape with the lowest energy. The difficulty is the
number of different shapes a protein can potentially fold into. Proteins
typically have hundreds or even thousands of amino acids. To determine
the structure means knowing the exact position and orientation of every
single one of those amino acids. With so many amino acids involved, the
number of possible shapes is astronomical, far too many to search
through even on a very powerful computer. Enormous effort has been put
into finding clever algorithms that can be used to restrict the number of
configurations that must be examined, and the algorithms are getting
pretty good. But there’s still a long way to go before we can use
computers to reliably predict protein shapes.

In 2007, a biochemist named David Baker and a computer graphics
researcher named Zoran Popovic, both from the University of
Washington, in Seattle, had an idea for a better way of solving the
problem. Baker and Popovio’s idea was to create a computer game that
shows a protein to the player, and gives them controls to change the
shape, rotating the protein, moving amino acids around, and so on. Some
of the controls built into the game are similar to the tools used by
professional biochemists. The lower the energy of the shape the player
comes up with, the higher their score, and so the highest scoring shapes
are good candidates for the real shape of the protein. Baker and Popovic
hoped that this might be a better approach to protein folding than the
conventional approaches, combining state-of-the-art computational
techniques with computer gamers’ persistence and abilities at pattern
matching and 3-D problem solving.

I was skeptical when I first heard about Foldit. It sounded like the dull
educational computer games I saw in school when I was growing up in
the 1980s. But I downloaded the game, and spent hours playing it over
several days. At that point, the excuse “I’m doing research for my book”



was rapidly becoming a euphemism for ‘“this i1s a great way to
procrastinate on writing my book,” and I forced myself to stop. So far,
more than 75,000 people have signed up. People play the game because
it’s good. It has the compelling, addictive quality all good computer
games have: a task that’s challenging but not impossible, instant
feedback on how well you’re doing, and the sense that you’re always just
one step away from improvement. It’s the same addictive quality we saw
earlier in the MathWorks competition, and which is also felt by many
participants in Galaxy Zoo. Furthermore, like Galaxy Zoo, Foldit is
deeply meaningful to many of the players. Einstein once explained why
he was more interested in science than politics by saying, “Equations are
more important to me, because politics is for the present, but an equation
is something for eternity.” Each time you classify a galaxy or find a
better way to fold a protein, you’re making a small but real contribution
to human knowledge. For many participants, Foldit and Galaxy Zoo
aren’t guilty pleasures, like playing World of Warcraft or other online
games. Instead, they’re a way of contributing something important to
society. One of the top Foldit players, Aotearoa, describes it as “the most
challenging, exciting, stimulating, intense, addictive game I have ever
played,” and comments that it provides a way for people to “offer
something proactive to solving some of the worlds/societies most
complicated puzzles, rather than waste time playing a ‘game’ that does
not provide the same ‘rewards’ as folding protein does, this way!”

In addition to the individual motivation to play, Foldit also encourages
collective problem solving by the players. There is an online discussion
forum and a wiki, where players share news and discuss their strategies
for protein folding. The game incorporates a simple programming
language that players can use to create scripts—short programs—that
automate game tasks. A typical script might implement a strategy for
improving a fold, or identify which part of the protein’s current shape is
in most need of improvement. Hundreds of such scripts have been
publicly shared—an open source approach to protein folding. Many of
the players work in groups, sharing their insights about the best ways of
folding. All this work is greatly informed by the game score, which, as in
the MathWorks competition, focuses participants’ attention where it will
be most useful: when one of the high-scoring players shares a strategy tip
or a script, other players pay attention. The players themselves are wildly
varied, ranging from a self-described “educated redneck™ from Dallas,
Texas, to a theater historian from South Dakota, to a grandmother of
three with a high-school education.



Just how good are the Foldit players at folding proteins? Every two
years since 1994, there’s been a worldwide competition of biochemists
using computers to predict protein structures. The competition, called
CASP—Critical Assessment of Techniques for Protein Structure
Prediction—is very important to the scientists who work on protein
structure prediction. Before the competition starts, the CASP organizers
approach some of the facilities that determine protein structure using the
traditional approach of X-ray diffraction, and ask them what protein
structures they expect to complete in the next couple of months. They
then use those proteins as puzzles in CASP. Starting with the sequence of
amino acids making up the protein, the CASP competitors are asked to
predict the structure. At the end of the competition, teams are ranked on
how close they come to the actual structure.

Foldit players competed in both the CASP 2008 and 2010
competitions. They performed extremely well, finishing near or at the
top on many of the CASP challenges. Foldit developer Zoran Popovic
summed up the results of the 2008 competition by saying that “foldit
players are on a par, but not better than protein folding experts at trying
to solve the same problem with all tools available to them. It also appears
that foldit outperformed all fully automated server submissions.” Thus, a
team of amateurs can be competitive with some of the world’s top
biochemists, equipped with state-of-the-art computers. Popovi¢ told me
that his “ultimate goal is to show that experts are unequivocally inferior
to the general population with this problem . . . a biochemistry PhD does
not self-select for spatial reasoning. Structure prediction is all about 3d
problem solving and very little about biochemistry.” Indeed, even
specialists in protein-structure prediction usually spend only a small
fraction of their time working directly on predicting protein structures.
And while they have expertise that the amateurs don’t, much of that
knowledge is incarnate in the mechanics of the game. That levels the
playing field enough that the remaining disparity in expertise can be
overcome by the greater time commitment of the Foldit players. It’s a
symbiosis: the professionals develop the systematic understanding that
underlies the mechanics of the game, and the amateurs then supply the
dedicated artistry required to take best advantage of that systematic
understanding.



Citizen Science Today

Citizen science is not an invention of the internet era. Many of the
earliest scientists were amateurs, often pursuing science as a hobby
alongside some more lucrative profession, such as astrology. But even
after science was professionalized, amateurs continued to dominate some
parts of science. For example, many of history’s most successful comet
hunters have been amateur astronomers, people such as John Caister
Bennett, a civil servant in the South African city of Pretoria, who
discovered one of the most spectacular comets of the twentieth century,
the great comet of 1968, Comet Bennett.

Although citizen science is not new, online tools are enabling far more
people to participate—think of Galaxy Zoo’s 200,000-plus participants
and Foldit’s 75,000-plus participants—and also expanding the range of
scientific work those people can do. To be a comet hunter in the 1960s
you needed to purchase or build a telescope, learn how to use it, and then
spend many, many hours observing the sky. The barriers to entry and to
continued contribution were high. By contrast, you can get started on
Galaxy Zoo or Foldit in a matter of minutes. It’s even possible to classify
galaxies on your smartphone. Aside from dropping barriers to entry,
online tools also enable sophisticated interactive training, and bring
participants together in communities where they can learn from one
another, and support one another’s work. As a result we’re seeing a great
flowering of citizen science.

As an example of this flowering, comet hunting has been transformed
by the internet. In 1995 the Europan Space Agency and NASA launched
a spacecraft called SOHO, which was designed to take exceptionally
good photos of the sun and its immediate neighborhood. (SOHO stands
for Solar and Heliospheric Observatory.) It turns out that near the sun is a
great place to look for comets, in part because comets are very well
illuminated there, and in part because their tails are elongated by the
solar wind. Ordinarily such comets wouldn’t show up in photos because
of glare from the sun, but one of the instruments on SOHO is specially
designed to block out light from the sun’s main body so that it can take
photos of the sun’s corona—the plasma “atmosphere just above the sun’s
surface. The SOHO team decided to share their images of the corona
openly on the internet, and many amateur comet hunters began combing
through the photos, looking for comets. The most successful is a German



amateur astronomer named Rainer Kracht, who spends hours each week
looking very, very carefully at pictures from SOHO. In this way he has
become the most successful comet hunter in history, so far discovering
more than 250 comets, almost one in 15 of all the comets ever
discovered.

Another example of citizen science is Project eBird, run by Cornell
University’s Laboratory of Ornithology. eBird asks amateur birdwatchers
to upload information about the birds they see to an online website: what
species of bird they saw, when they saw it, and where they saw it. By
combining all the submitted observations, eBird can build up an
understanding of the world’s bird populations. This is another case where
citizen science is building on an earlier tradition, this time a tradition of
collaboration between amateur birdwatchers and professional
ornithologists. But Project eBird is enabling this collaboration on an
unprecedented scale, with participants so far reporting more than 30
million bird observations. About 2,500 birdwatchers are frequent
contributors to the site, making 50 or more contributions, and tens of
thousands of people regularly use the site. The data collected can be
used, for example, to generate range maps showing the density of some
particular species of bird in different locations. As eBird gathers more
data (it began in 2002) such range maps will become increasingly useful
for tracking the impact on birds of effects such as climate change,
changes in nearby human population, and other environmental factors.

Yet another example of citizen science comes from the study of
dinosaurs. Most dinosaur research concentrates on just one or a few
fossils. In September of 2009, paleontologists Andy Farke, Mathew
Wedel, and Mike Taylor had the idea of creating a large database
containing information about many dinosaurs, by combining the results
of hundreds or even thousands of scientific papers. Their hope was that
the database could then be mined to answer many new questions. But
instead of building the database on their own, they decided to harness the
distributed knowledge and effort of a broader community of people.
They started the Open Dinosaur Project, recruiting people from all over
the world to, er, dig up papers about dinosaurs. As I write, they’re
focusing on dinosaur limb measurements. If a volunteers finds a paper
studying, say, a Stegosaurus specimen with a right femur that’s 1,242
millimeters in length, they would record that piece of data in the
database. The project has thus created a list of measurements from 1,659
separate dinosaur specimens, contributed by 46 people, many amateurs.
Their hope is that this will let them answer questions about (for example)



the evolution of dinosaur locomotion. It’s still early days in the Open
Dinosaur Project, and while data are being collected quickly, it’s too
soon to say how useful the data will be. But it’s aother example of how a
community containing both amateur and professional scientists can do
more than either group could on their own.

From these and earlier examples, we see several distinct ways that
citizen scientists are contributing to science. Citizen science can be a
powerful way both to collect and also to analyze enormous data sets. In
those data sets, citizen scientists can scout out the unusual and the
unexpected, discoveries such as the voorwerp and the green peas,
discoveries that would be difficult to program a computer to spot. Citizen
science thus complements the tools of data-driven intelligence described
in the last chapter.

Citizen scientists can also work to symbiotically extend the capability
of those tools, as demonstrated by the Foldit players’ artistry in using the
tools of protein-structure prediction. In another twist on this idea, the
Zookeepers have recently used the Zooites’ galaxy classifications to train
a computer algorithm to distinguish between spiral and elliptical
galaxies. The preliminary results are promising, with the algorithm
achieving 90 percent agreement with the human classifications. This
result is interesting in part because future sky surveys from instruments
such as the Large Synoptic Survey Telescope (the LSST, described on
page 107) will produce vastly more data than even the huge crowd of
volunteers at Galaxy Zoo can hope to analyze. Perhaps the results from
the LSST will be understood by first asking amateurs to analyze a small
portion of the data, and then using computer algorithms to learn from the
amateurs’ analyses, with computers completing the classification of the
entire data set. Possibilities such as these are creating a massive
efflorescence of citizen science projects, with ordinary people
participating in scientific research in ways unimaginable a generation
ago.

How Much Will Citizen Science Change
Science?

Examples such as Galaxy Zoo, Foldit, and the open dinosaur project
are interesting and fun. But science is vast, and while citizen science i1s



likely to grow rapidly in the years and decades ahead, that does not mean
that it will come to be a dominant part of how science is done. Although
projects such as Galaxy Zoo are important, it’s not obvious whether
they’re curiosities or harbingers of a broader change in science. Will
citizen science ever have a broad and decisive impact on how science is
done? Or is it destined to be useful mainly in a few particular corners of
science? I don’t know the answer to these questions. We’ve only just
begun exploring the ways online tools can expand the impact of citizen
science. The situation is quite different from the changes described in the
last chapter. There, as we saw, powerful new tools for finding meaning in
knowledge are already revolutionizing many parts of science. As yet, the
prospects for citizen science are more uncertain. But although we can’t
know for sure how important citizen science will ultimately be, we can at
least think a little more about its potential, where it might be applied, and
what its limitations might be.

Part of that potential is to create supportive and stimulating
communities for citizen science. Before the internet, most citizen
scientists worked largely on their own, isolated from the encouragement
and criticism of colleagues. Today, that’s changing. In the Galaxy Zoo
forums you see a community where people help out one another, a
supportive environment in which they can learn and grow as
astronomers, a place where people can ask questions and other people
will answer in a friendly way. Consider, for example, the way the Zooites
helped each other in their quest to understand the green pea galaxies.
They repeatedly critiqued and improved one another’s ideas about what
made the green peas unique, egging one another on, sharing tidbits about
problems such as how best to analyze a galaxy’s spectrum, or how to do
database queries to automatically find green peas in the SDSS data.
When you’re in a community like that, you’re getting constant feedback
that says, in effect, “Hey, this is important, this is what really matters.”
Think of the way children play soccer or baseball in streets and parks—
they play tirelessly, hour after hour, day after day, gradually getting
better as part of a community that both demands their best, and makes
reaching it a joy. All the most creative communities do the same.

This new type of community building is important, but today’s citizen
science projects have a great deal of room for improvement. Galaxy Zoo,
Foldit, and most other citizen science projects don’t yet have the kind of
structured stepping stones of development and mentorship available to
professional scientists, stepping stones that help those scientists acquire
the broad base of knowledge required for many types of scientific work.



It will be interesting to see how citizen science projects evolve. Will we
see ever more effective learning environments, a place where amateurs
can learn as they go, gradually acquiring more expertise? Will we see
systems of mentorship emerge, giving people a structured way of
learning? Imagine online communities built around virtual seminar series
and conferences, online question-and-answer sessions, and discussion
groups. These and other ideas can be used to create a demanding and
rewarding online community supporting citizen science.

The biggest citizen science projects have recruited large numbers of
people—Galaxy Zoo has more than 200,000 participants—and you
might wonder if there is much more room for citizen science to grow. Or
has the public appetite for citizen science already been exhausted?
There’s a nice way of thinking about these questions, inspired by an
analysis of the analogous questions for Wikipedia done by the author
Clay Shirky, of New York University. To start, let’s figure out a rough
estimate of the total effort involved in a project such as Galaxy Zoo. So
far, the Zooites have done approximately 150 million galaxy
classifications. If each classification takes, say, 12 seconds, then that
works out to 500 thousand hours of work. That’s like having 250
employees work full time for a year! While this is an amazing amount of
work, on the scale of society as a whole it’s a drop in the bucket. On
average Americans watch five hours of television per day, which over
the course of a year means that Americans are watching more than 500
billion hours of television. That’s a million Galaxy Zoo projects!

Let’s look at an activity that’s closer to Galaxy Zoo in scale. The
English soccer club Manchester United seats 76,000 at their home
stadium, Old Trafford. Games take two hours, with stoppages, so the
spectators at a game are spending roughly 150,000 hours of time in total,
nearly a third of the amount of time the Zooites have spent classifying
galaxies! To put it another way, imagine that you filled up the
Manchester United stadium, and instead of watching soccer, you asked
people to classify galaxies for a couple of hours. If you did that three
times, then you’d roughly match the effort put into Galaxy Zoo. Of
course, Galaxy Zoo has been ring three years as [ write, while
Manchester United plays dozens of home games each year. So the
Zooites are a notch or two down from the devotion shown by Manchester
United’s home game fans. A closer comparison is to a much smaller
soccer club, such as the Bristol Rovers, who get a few thousand fans to
each home game. There’s a great deal of room for citizen science to
grow!



Shirky has coined the phrase “cognitive surplus” to describe our
society’s disposable time and energy—all the time we collectively have
when we’re not dealing with the basic obligations of life, such as making
a living or feeding our family. It’s the time we put into leisure activities
such as watching television, or going out with friends, or relaxing with a
hobby. Mostly, these are activities we do individually or in small groups.
What the online tools do 1s make it easy to coordinate complex creative
projects in a large group. It’s always been possible for a large group of
people to get together and cheer at a soccer game. But it’s much harder
to get a large group of people together to work toward a complex
creative goal. One way is to pay all those people to come together and
form a hierarchy organized into managers and subordinates. We call that
a company or a nonprofit or a government. But without money it’s
historically been difficult to hold such complex creative projects
together. Online tools make it much easier to do this complex
coordination, even without money as a motivator. As Shirky poetically
puts it:

We are used to a world where little things happen for love and
big things happen for money. Love motivates people to bake a cake
and money motivates people to make an encyclopedia. Now,
though, we can do big things for love.

Projects such as Galaxy Zoo and Foldit are doing just that, using our
society’s cognitive surplus to solve scientific problems.

How much of our society’s cognitive surplus will ever be used to do
citizen science? Today it’s not possible to answer that question. Citizen
science is in the early days of a major expansion enabled by online tools.
How far it ultimately expands will depend upon the imagination of
scientists in coming up with clever new ways to connect with laypeople,
ways that inspire them and help them make contributions they find
meaningful. You get a glimpse of this in the story of one of the most
prolific participants in Galaxy Zoo, a woman named Aida Berges.
Berges is a 53-year-old stay-at-home mother of two originally from the
Dominican Republic, now living in Puerto Rico. She classifies hundreds
of galaxies every week, more than 40,000 galaxies in total thus far. She’s
worked on the hunt for green peas, for voorwerps, for merging galaxies,
and many other projects. She’s discovered two hypervelocity stars, stars
which are moving so fast that they are actually leaving our galaxy. Fewer
than twenty such stars have been discovered, ever, in total. Ms. Berges



joined Galaxy Zoo after reading about it online and said of the
experience that “my life changed forever . . . it was like coming home for
me.

Cynics will say that most people aren’t smart or interested enough to
make a contribution to science. I believe that projects such as Galaxy
Zoo and Foldit show those cynics are wrong. Most people are plenty
smart enough to make a contribution to science, and many of them are
interested. All that’s lacking are tools that help connect them to the
scientific community in ways that let them make that contribution.
Today, we can build those tools.

Changing the Role of Science in Society

After Jonas Salk announced his polio vaccine in 1955 it was quickly
pressed into widespread use in the rich developed countries, and polio
rates plummeted. But in developing countries it was a different story. In
1988, roughly 350,000 people in the developing world became infected
with polio. In that year the World Health Organization (WHO) decided
to launch a global initiative to wipe out the disease. They made quick
progress, and in 2003 there were only 784 new cases worldwide, most
concentrated in just a few countries. Worst hit was Nigeria, where nearly
half (355) of the new cases occurred. WHO decided to launch a major
vaccination program in Nigeria, but the initiative was blocked by
political and religious leaders in three northern Nigerian states—Kano,
Zamfara, and Kaduna—with a total population of 18 million people.
Leaders in those states warned that the vaccines could be contaminated
with agents causing HIV/AIDS and infertility, and told parents they
should not allow their children to be vaccinated. The government of
Kano described their opposition to vaccinations as “a lesser of two evils,
to sacrifice two, three, four, five even ten children to polio [rather] than
allow hundreds of thousands or possibly millions of girl-children likely
to be rendered infertile.” The leader of the powerful Kano State Sharia
Supreme Council said the polio vaccines were “corrupted and tainted by
evildoers from America and their Western allies.” Vaccinations were
suspended in Kano, and a new polio outbreak occurred, spreading to



eight neighboring countries, and eventually causing 1,500 children to
become paralyzed.

Polio vaccination is far from the only issue where good science
doesn’t necessarily lead to good public health outcomes. In the United
Kingdom, use of the measles-mumps-rubella vaccine dropped sharply in
the early 2000s after a 1998 paper in the prestigious medical journal The
Lancet suggested the vaccine might cause autism in children. (The
paper’s methodology was flawed, and it was later retracted by the journal
and most of the authors). The supposed vaccine-autism link became a
topic of great public controversy in the UK, with Prime Minister Tony
Blair publicly supporting the vaccine, but refusing to confirm whether
his son Leo had been vaccinated. The vaccination rate dropped from 92
percent to 80 percent. That may sound like a small drop, but the number
of measles cases jumped dramatically, rising seventeen-fold over just a
few years. To understand why the increase in measles was so dramatic—
and therefore why a drop in vaccination rates is such a big deal—notice
that the fraction of people not being vaccinated rose from 8 percent to 20
percent. Roughly speaking, that meant that someone infected with
measles would be exposed to two and a half times as many susceptible
people as before. And if any of those people caught measles, they would,
in turn, be exposed to two and a half times as many susceptible people as
before. And so on. That’s why even a small drop in vaccination rates can
cause a big increase in disease incidence.

Vaccine fiascoes notwithstanding, our society often does a good job
converting science into social good. Markets and entrepreneurship, for
example, are powerful institutions that often help turn science into goods
that enhance our lives. Think of a development such as lasers. When
lasers were first invented, many people regarded them as toys with few
apparent uses. But etrepreneurs figured out ingenious ways of using
lasers to do everything from playing movies (DVDs) to correcting vision
by laser eye surgery. As a society we’re very, very good at taking science
and using it to develop new products for delivery to market.

But while we’re good at delivering science to market, we have a more
mixed record when it comes to delivering science through public policy.
In a market, everyone can decide for themselves whether they want to
use a product. If laser eye surgery makes you squeamish, no one’s
making you get it. But policy decisions are often collective decisions,
like whether child vaccination should be mandatory. Such decisions can’t
be made individually, as in a market, but require broad agreement to be
effective. And when scientists discover something with dramatic policy



implications—say, that human carbon dioxide emissions are leading to a
warming of the global climate—then in many ways they’re treated as
just another interest group trying to lobby the government. But science
isn’t just an interest group. It’s a way of understanding the world. Ideally,
our institutions for governance would incorporate in public policy the
knowledge gained by science—as imperfect, uncertain, and provisional
as that knowledge is—as well as possible. But in today’s democracies,
that’s not what happens. This is the problem of science in democracy.

I don’t have solutions to the vaccine problem or, more broadly, to the
problem of science in democracy. I’'m describing these problems because
they’re concrete examples of critical flaws in the role science currently
plays in our society. Any fix to these and similar problems will require
big changes in the role of science in society. Most of the time such
changes occur only very slowly, and so it’s tempting to take that role for
granted, to view it as a natural state of affairs. But, in fact, the current
state of affairs is not natural at all: the role of science has been radically
different in different societies and at different times—just think, for
example, of all the societies in which scientific thought has been entirely
suppressed. Historically, big changes in the role of science have often
been driven by new technologies and the new institutions they enable.
Think of the printing press’s role as an enabler of the Renaissance, the
Reformation, and the Enlightenment. We can change the role of science
in society if we change the institutional answers we give to fundamental
questions such as “Who funds science?” or “How is science incorporated
into government policy?” or even “Who can be a scientist?”

As a concrete example of the way institutions impact the role of
science, let’s return to the market system. The importance of the market
to the role of science is vividly illustrated by what happened when the
market was suppressed in the Soviet Union. Although the Soviet Union
had one of the best scientific research systems in the world, without a
market system it was mostly unable to make scientific innovations
available to its citizens. Another example of the power of institutions is
the way the introduction of compulsory schooling has increased general
scientific literacy. Although it’s conventional wisdom in many circles to
complain about standards of scientific literacy, by historical standards we
live in an enlightened age. Both the market and schools act as bridging
institutions, connecting science to society in a way that brings many
social benefits. As a final example, this time a negative example,
consider the suppression of science by the early Christian Church. This
laste more than a millennium, from the Christian emperor Justinian’s



closing of the Academy in Athens in 529 CE to the trial and house arrest
of Galileo in 1633 CE.

By changing our society’s institutions, we can dramatically change the
role of science in society, and perhaps address some of our society’s
most significant problems. To do this will require the imagination and
will to invent new institutional mechanisms that could address problems
such as the vaccine problem or the problem of science in democracy. It
may seem unrealistic to change our institutions in this way. Most of the
time institutions change only very slowly. But, today isn’t most of the
time. Online tools are institution-generating machines. Examples such as
Galaxy Zoo, Wikipedia, and Linux demonstrate how much easier it has
become to create new institutions, and even to create radically new types
of institution. At the same time, online tools are transforming existing
institutions in our society—consider the collapse of traditional music and
newspaper companies over the past ten years, and the gradual rise of new
models in their place. And so we’re at a very interesting point in history,
one where it’s become far easier to create new institutions and to
reinvent existing institutions. This doesn’t mean that we can easily solve
problems such as the vaccine problem. What it does mean is that we
have an opportunity to reimagine and to some extent recreate the role of
science in society. We’re already beginning to see this happening, with
citizen science projects such as Galaxy Zoo and Foldit showing how
online tools can be used to change something very fundamental: who can
be a scientist. In the remainder of this chapter, we’ll explore other ways
online tools change the role of science in society, including ways they
improve public access both to the results of science, and to scientists
themselves.

Open Access

Imagine you’re a woman who has gone to the doctor for a regular
mammogram screening, and your doctor has come back with surprising
and terrible news: you have early-stage breast cancer. Shocked, you go
home, and begin planning your attack on the disease. You decide that the
first thing to do i1s to become better informed. You read around online,
and discover a great deal of useful information from sites such as the



cancer.gov site run by the US National Cancer Institute. But after a
while, all the introductory information you find on the web becomes
repetitive. You want more up-to-date knowledge on the most promising
current research. A friend mentions that Google has a special search
engine—called Google Scholar—which will help you search the
scientific literature for the best and latest papers on breast cancer. You go
to the site, search on “breast cancer,” and discover umpteen-thousands of
papers. Excellent! Even better, Google Scholar orders the results
according to Google’s best guess as to their importance. You go to
download the paper Google ranks as the top result, and discover that you
need to pay 50 dollars for the download. “Never mind,” you think, “I’ll
come back to that paper later. But when you look at the second paper,
you discover it costs 15 dollars to download. Onto the third paper, and
that publisher wants to charge you, too, but is coy about the price, asking
you to register on their site first. As you continue paging through the
results, the pattern of fees continues, and your initial elation turns to
angry disbelief. “Surely,” you reason, “with tens of billions of dollars of
taxpayer money spent each year on scientific research, we should at least
be able to read the results of that research?!'Y Now, breast cancer is a
serious disease and you’re tempted to swallow your anger and pay the
fees. But there are thousands of papers. There’s no way you can afford to
pay for even a tiny fraction of them.

Traditional scientific publishing is based on a pay-for-access model. In
many ways it works much like the magazine business, and there’s less
difference than you might think between a leading science journal such
as Physical Review Letters and magazines such as Time and People. Like
the magazines, science journals are collections of articles, but instead of
discussing news, politics, and celebrities, the journal articles describe
scientific discoveries. Journals may not have flashy covers and
advertising, nor will you find most of them on display at your local
newsstand, but both journals and magazines make much of their money
by charging readers. An annual journal subscription might run to
hundreds or thousands or even tens of thousands of dollars. And, as
we’ve just seen, journals supplement those fees by charging for one-off
access to articles on the web, typically $10 to $50.

This subscription-based business model has been used by scientific
publishers for hundreds of years. It’s a model that has served both
science and society well. But the internet makes it possible to move to a
new model of open access to scientific papers, where those papers may
be freely downloaded. This is part of the shift we saw in the last chapter,



with all the world’s scientific knowledge gradually becoming accessible
online. A caveat to that story, though, is that at present much of the
knowledge 1s only accessible if you re a scientist. In particular, scientists
often work at universities that have bulk subscriptions to thousands of
scientific journals. A scientist can freely download as many articles
about breast cancer or any other subject as they wish, while other people
are kept out by the fees. It’s as though there is a wall dividing humanity.
On one side of the wall are 99-plus percent of the human beings who
have ever lived. And on the other side of the wall is the world’s scientific
knowledge. The open access movement is trying to break down that wall.
Just as citizen science is changing who can be a scientist, the open access
movement is changing who has access to the results of science.

One of the standout successes of the open access movement is a
popular website known as the physics preprint arXiv (pronounced
“archive™). A “preprint” is a scientific paper, often at late draft stage,
ready to be considered by a scientific journal for publication, but not yet
published in a journal. You can go to the arXiv right now, and you’ll find
hundreds of thousands of up-to-the-minute preprints from the world’s
physicists, all available for free download. Want to know what Stephen
Hawking is thinking about these days? Go to the arXiv, search on
“Hawking,” and you can read his latest paper—not something he wrote a
few years or decades back, but the paper he finished yesterday or last
week or last month. Want to know the latest on the hunt for fundamental
particles of nature at the Large Hadron Collider (LHC)? Go to arXiv,
search on “LHC,” and you’ll get a pile of papers to make you stagger. If
you get a kick out of surprising people, it might make for unusual
cocktail party conversation: “So, did you see the latest on the LHC’s
hunt for the Higgs particle? Turns out . . .” Of course, it’s not all easy
reading. Many of the papers are written by physicists for physicists, and
they can get extremely technical. But even the most technical papers
often have intriguing nuggets that are accessible to the layperson.

The arXiv site works like this. When a physicist completes their latest
paper, they go to the arXiv website and upload it. A quick check is done
by arXiv moderators to remove inappropriate submissions—you won’t
see Viagra advertisements or too many obviously crackpot papers. A few
hours later the paper appears on the site, where it can be downloaded and
read by anyone in the world. Many physicists submit their papers to the
arXiv as soon as they’re complete, and long before they’re published in a
conventional scientific journal. More than half of all papers in physics
appear in the arXiv, and in some subfields of physics the fraction is



nearly 100 percent. Many physicists begin their working day by
checking the arXiv to see what appeared overnight. It’s revolutionized
physics, by speeding up the rate at which scientific discoveries can be
shared. At the same time, the arXiv has made much of humanity’s
knowledge about physics freely accessible to anyone with an internet
connection. Whether or not you have any personal interest in physics, it’s
to society’s great benefit that this knowledge i1s freely available to
entrepreneurs and engineers, to journalists and students, and to many
others who can benefit, but who were formerly locked out.

The arXiv is one of the big successes of the open access movement.
But in most fields of science, fields such as medicine, climate science,
and the environment, humanity’s scientific knowledge is still mostly
accessible only to scientists, and to whoever else can pay for access.
Because of this, and inspired in part by the success of the arXiv, several
organizations are creating open access solutions for fields other than
physics. An example is the Public Library of Science, or PLoS. Founded
in 2000, PLoS is in many respects more like a traditional journal
publisher than it is like the arXiv. But rather than charging readers for
access to papers, PLoS instead charges authors to publish their papers.
That charge funds PLoS’s operation, making it possible for PLoS papers
to be made freely available on the web. Using this model, PLoS has
rapidly built journals regarded as among the best in their fields, journals
such as PLoS Biology and PLoS Medicine.

The arXiv and PLoS are just two of many efforts aiming to make open
access to the scientific literature the norm. Many other open access
projects have been launched. These projects have been gaining traction,
and in 2008 the US Congress signed into law the National Institutes of
Health (NIH) Public Access Policy. The NIH policy requires anyone
funded by the NIH to upload finished papers to an openly accessible
archive within 12 months of publication in a conventional journal. With
a budget of more than 30 billion dollars per year, the NIH is the world’s
largest scientific grant agency, and so this policy is rapidly increasing the
amount of openly accessible research. Many other grant agencies and
universities around the world are implementing similar open access
policies. For instance, all of the UK Research Councils now have
policies along similar lines to NIH’s requiring researchers to make their
papers openly available. Although much scientific research still remains
locked behind publisher paywalls, we may be on the verge of a major
shift toward open access as the norm, not the exception. If that happens,
people in the decades to come will look back in amazement that there



was ever a time we did not have universal access to science. It will be an
institutional shift not unlike the introduction of the market.

The most obvious benefit of widespread open access is to individual
citizens: no more restrictions on the ability of people suffering diseases
to download the latest research! But over the long run an even bigger
benefit of open access will be that it enables the creation of other
institutions bridging science and the rest of society. We’re already
starting to see this happen. For example, user-generated online news sites
such as Digg and Slashdot routinely link to the latest research in the
arXiv and PLoS and other open access sources. These news sites enable
ordinary people to collectively decide what the news is, and provide a
space where they can discuss that news. Often, what people choose to
discuss includes the latest papers at the arXiv on subjects such as
cosmology and quantum teleportation, or the latest papers at PLoS on
subjects such as genetics and evolutionary biology. When people on the
news sites post links to pay-for-access journals such as Nature and
Science, complaints often ring out, and users sometimes point out pirated
online copies as an alternative. (This is not something I endorse, but it
does happen!) In a similar way, professionally produced online news
sites such as ScienceNews offer their perspective on the latest research.
They cover both open and closed access stories, but the open access
stories often get more attention simply because people can click through
to see the original research. These sites provide a window on the
scientific community, complementing and extending resources such as
the arXiv and PLoS. Of course, the effect of these changes is at times
mixed. Many news articles have been written about papers of dubious
scientific merit that have appeared on the arXiv and other open access
resources. But insofar as scientists have good faith evidence on their
side, open access is a powerful platform for building new institutions for
the betterment of society.

The reactions of traditional pay-for-access scientific publishers to
open access have varied. Some have begun their own experiments with
open access. But many, including some of the largest publishers, feel
threatened by the open access movement. For them, open access archives
and journals aren’t run-of-the-mill business competitors. Instead, they
have the potential to radically change the business model of scientific
publishing. Traditional publishers face a tough choice. Should they adopt
the open access model of PLoS and journals like it? Or should they stay
as they are? Should they go even further, and fight against open access,
for instance by lobbying against policies such as the NIH open access



policy? It’s a difficult choice to make, for if they go the open access
route, it’s possible that it will greatly reduce journal revenues. Unless
those companies develop new sources of revenue, their employees will
lose jobs, and shareholders will lose money. That’s tough to face after
decades and sometimes centuries of hard work building businesses that
have served society well. But society’s best interest has shifted away
from that old business model. It’s no wonder many traditional publishers
feel threatened. The available technology may have changed, but that
doesn’t mean the business models have.

Monetarily, there’s a lot at stake here: scientific publishing is a big
business. This may be a surprise to you. Certainly, when it comes to
high-flying professions, not many people think of scientific journal
publishing. CEOs from scientific publishers don’t often appear on the
cover of Forbes or Business Week, alongside software moguls or hedge
fund operators. But maybe they should, because scientific publishing is
staggeringly profitable. The world’s larges scientific journal publisher is
the company Elsevier. In 2009 Elsevier made a profit of 1,100 million
US dollars, more than a third of their total revenue of 3,200 million
dollars. As a share of revenue, that’s the kind of profit enjoyed by
businesses such as Google, Microsoft, and a very few others. Elsevier is
so profitable that its parent company, the Reed Elsevier Group, recently
sold off another big part of their business, the educational publisher
Harcourt, for close to five billion dollars, to help finance the expansion
of Elsevier’s journal publishing business. And while Elsevier is the
biggest of the scientific publishers, many other scientific publishers also
do amazingly well. Even some not-for-profit scientific societies make a
lot of money by publishing journals for their members, with the profits
then subsidizing other society activities. For example, in 2004 the
American Chemical Society made a profit of about 40 million US dollars
on their journals and online databases, out of revenue of 340 million
dollars. That’s much less than Elsevier, but remember: this is a not-for-
profit society!

With so much at stake, it’s no surprise that some traditional scientific
journal publishers have begun aggressively lobbying against open
access. According to a report published by Nature in 2007, a major
publishers’ trade association hired high-priced public relations consultant
Eric Dezenhall to help them take on the open access movement.
Dezenhall had earned a reputation as the “pit bull” of the public relations
world, with clients including Jeffrey Skilling, the disgraced former
Enron chief, and ExxonMobil, which hired Dezenhall’s company to help



them take on Greenpeace. Dezenhall advised the publishers to focus on
simple messages such as “Public access equals government censorship,”
and suggested that they try to “paint a picture of what the world would
look like without peer-reviewed articles.” (Both notions are false: open
access doesn’t involve censorship, nor does it mean giving up peer
review.) When asked about the move to hire Dezenhall, a vice president
at the publishers’ association replied, “It’s common to hire a PR firm
when you’re under siege.” Not long after receiving Dezenhall’s advice,
the publishers’ association launched an organization called PRISM, the
Partnership for Research Integrity in Science and Medicine. PRISM
began a publicity initiative arguing against open access policies such as
the NIH policy, claiming that open access would threaten “the economic
viability of journals and the independent system of peer review” and
potentially introduce “selective bias into the scientific record.”

The Dezenhall-PRISM story is just one skirmish of many in the battle
between some traditional scientific publishers and the open access
movement. On the one hand, we have a situation where open access
poses a threat to the profits and ultimately the jobs of both the traditional
scientific publishing companies and the not-for-profit scientific societies.
But balanced against this is a marvelous opportunity: as examples such
as the arXiv and PLoS and the NIH open access policy show, it’s now
feasible to make all scientific knowledge freely available to all of
humanity. And that will bring astonishing benefits, benefits far too great
to refuse merely to preserve a few successful businesses. As occurs so
often with the introduction of new technologies, we are weighing a great
good for society against harm for a few. The traditional publishers who
are battling against open access should have our sympathy, but not our
support.

Science Blogging

In April of 2008, author Simon Singh wrote a piece in the Guardian
newspaper, where he criticized the British Chiropractic Association
(BCA) for claiming “that their members can help treat children with
colic, sleeping and feeding problems, frequent ear infections, asthma and



prolonged crying, even though there is not a jot of evidence. This
organization is the respectable face of the chiropractic profession and yet
it happily promotes bogus treatments.” The BCA responded by suing
Singh under UK libel laws, claiming that the effectiveness of its
treatments was supported by a “plethora of evidence.” The case received
a lot of public attention in the UK, and fourteen months after Singh’s
article the BCA released a seven-page document describing evidence for
the effectiveness of chiropractic treatments.

What happened next was unexpected. Almost immediately, the
evidence released by the BCA was investigated and torn apart by an ad
hoc group of science bloggers, acting on their own initiative. Here’s how
the events were described in an article in The Lawyer written by Robert
Dougans, a lawyer who acted for Singh in the case, and David Allen
Green, a blogger who had been covering the case:

In less than a day, the credibility of this evidence—and indeed
that of the BCA for commending it—was destroyed. A dozen or so
scientist-bloggers, including a Fellow of the Royal Society, were
able to track down and assess each of the scientific papers cited by
the BCA and were able to show beyond doubt that these papers did
not support the BCA position at all. This was a stunning and
devastating blogging exercise, and when it was formally repeated
by the British Medical Journal a few weeks later it was almost an
afterthought. The technical evidence of a claimant in a controversial
case had simply been demolished—and seen to be demolished—but
not by the conventional means of contrary expert evidence and
expensive forensic cross-examination, but by specialist bloggers.
And there is no reason why such specialist bloggers would not do
the same in a similar case.

Dougans and Green called the process “wiki litigation,” and
commented that its importance to the case went well beyond demolishing
the BCA’s evidence. They said that blogging substantially influenced
coverage of the case in the mainstream media, and also “provided Singh
with varied and well-reasoned views at each stage beyond that of his
legal team and campaigning enthusiasts. Singh certainly took these views
into account in his decision-making.” It’s a remarkable demonstration of
how a group of bloggers can cause change in society.

Like open access and citizen science, science blogs are an institution
that 1s changing the role of science in society. I won’t talk in all that



much detail about science blogging here. The reason is that ever since
blogging (in all its forms, not just science blogging) began in the 1990s,
there’s been a lot of brouhaha about it—I’ve lost track of the number of
magazine and newspaper articles I’ve seen saying “Blogs are
revolutionizing politics!”’; “And journalism!”; “No, they’re not!”; and so
on. | don’t want to cover that well-trodden ground again. But I do want
to describe a few examples giving the flavor of how science blogs can
establish a new type of relationship between the scientific community
and the broader community, complementing and extending ideassuch as
open access.

One remarkable aspect of the most widely read science blogs is their
popularity. Pharyngula, a blog run by biologist Paul Myers from the
University of Minnesota, receives over 100,000 visits per day,
comparable to the circulation of a leading daily newspaper in a large
metropolitan center such as the Des Moines Register or the Salt Lake
Tribune. This 1s not bad for one guy writing in his spare time—and far
more attention than all but the most famous mainstream print journalists
regularly receive.

Pharyngula is the most popular science blog, but many other science
blogs have thousands or tens of thousands of regular readers. My vote
for the best blog in the world is the blog of Terence Tao, a Fields Medal-
winning mathematician based at UCLA. (We met Tao briefly earlier, as
one of the participants in the Polymath Project.) Tao’s blog contains
hundreds of posts. Some of the posts are lighthearted (“Quantum
mechanics and Tomb Raider”), but most of the posts contain highly
technical mathematics. Just to give you the flavor, posts include
“Finitary consequences of the invariant subspace problem” and “The
transference principle, and linear equations in primes.” Although the
titles look forbidding to non-mathematicians, for mathematicians these
posts are remarkably clear and insightful expositions of difficult topics,
often containing many thoughtful original insights. Despite its technical
nature, more than 10,000 people read Tao’s blog. The comments section
reveals that while many of these people are professional mathematicians,
many are also students, sometimes in remote locations. Some of the
commenters have little mathematical background: they are just interested
people who wish to learn more and who enjoy being exposed directly to
the thinking of one of the world’s leading scientists.

What should we make of science blogging? Is it going to transform the
world? In its current form, I don’t think so. Instead, the way to think
about science blogging is as a harbinger of what’s possible. Science



blogs show in nascent form what can happen when you remove the
barriers separating scientists from the rest of the community, and enable
a genuine two-way flow of information. A friend of mine who was
fortunate enough to attend Princeton University once told me that the
best thing about attending Princeton wasn’t the classes, or even the
classmates he met. Rather, it was meeting some of the extraordinarily
accomplished professors, and realizing that they were just people—
people who sometimes got upset over trivial things, or who made silly
jokes, or who made boneheaded mistakes, or who had faced great
challenges in their life, and who somehow, despite their faults and
challenges, very occasionally managed to do something extraordinary.
“If they can do it, I can do it too” was the most important lesson my
friend learned.

What’s important then is that blogs make it possible for anyone with
an internet connection to get an informal, rapid-fire glimpse into the
minds of many of the world’s scientists. You can go to the blog of
Terence Tao and follow along as he struggles to extend our
understanding of some of the deepest ideas of mathematics. It’s not just
the scientific content that matters, it’s the culture that is revealed, a
particular way of viewing the world. This view of the world can take
many forms. On the blog of experimental physicist Chad Orzel you can
read his whimsical explanations of physics to his dog, or his discussions
of explosions in the laboratory. The content ranges widely, but as you
read, a pattern starts to take shape: you start to understand at least a little
about how an experimental physicist views the world: what he thinks is
funny, what he thinks is important, what he finds irritating. You may not
necessarily agree with this view of the world, or completely understand
it, but it’s interesting and transformative nonetheless. Exposure to this
view of the world has always been possible if you live in one of the
world’s intellectual capitals, places such as Boston, Cambridge, and
Paris. Many blog readers no doubt live in such intellectual centers. But
you also routinely see comments on the blog from people who live
outside the intellectual centers. I grew up in a big city (Brisbane) in
Australia. Compared to most of the world’s population, I had a youth of
intellectual privilege. And yet the first time in my life that I heard a
scientist speaking informally was when I was 16. It changed my life.
Now anyone with an internet connection can go online, and get a
glimpse into how scientists think and how they view the world, and
perhaps even participate in the conversation. How many people’s lives
will that change?



Imagining New Institutions

Institutions such as citizen science, open access, and science
blogging are all changing science’s role in our society. Today, these
institutions are small, but they’re growing rapidly. Although events such
as the Singh case and Hanny’s discovery of the voorwerp are significant,
their impact is tiny when compared to society’s largest institutions, such
as compulsory schooling. But most big and important institutions start
out tiny and inconsequential—think of the humble origins of the school
system, or of democratic government. What matters is not the absolute
size of an institution, but rather its potential to grow. Institutions are what
happens when people are inspired by a common idea, so inspired that
they coordinate their actions in pursuit of that idea. Online tools make it
far easier to create institutions, by amplifying ideas faster than ever
before, and by helping coordinate action.

As an example, Galaxy Zoo began in 2007 with two guys in a pub,
working on a budget of chutzpah and imagination. Three years later it
involved 25 professional astronomers and 200,000 amateurs. It’s
expanded to include projects such as Moon Zoo and Project Solar Storm
Watch. How much larger will it be in ten years’ time? Suppose Galaxy
Zoo decides to systematically solicit proposals from the astronomy
community for the analysis of data sets. It’s not too much of a leap to
imagine Galaxy Zoo becoming an institution crucial to the whole field of
astronomy, and perhaps to other fields as well. What other new
institutions will we have the chutzpah and imagination to dream up?
What other new answers will we find to fundamental questions about the
role of science in society?

Bridging the Ingenuity Gap

The most 1solated place in the world i1s Easter Island. It’s a tiny island
in the southeast Pacific, just 25 kilometers (15 miles) across, 3,500
kilometers (2,200 miles) west of Chile, and 2,100 kilometers (1,300
miles) east of the Pitcairn Islands. The island was originally settled by



Polynesian islanders, and its culture thrived for hundreds of years, with
the population growing to somewhere between 10,000 and 30,000
people. But as the population grew, the islanders consumed more and
more of the island’s resources, and sometime in the 1500s or 1600s, its
society collpsed. When Easter Island’s European discoverer, the Dutch
explorer Jacob Roggeveen, arrived in 1722, he found an island stripped
of natural resources. There was not a single tree higher than three meters
anywhere on the island. Today, by analyzing pollen from the island, we
know that Easter Island was formerly a subtropical forest, with at least
21 species of tree, some of them growing up to 30 meters high.
Roggeveen also found not a single species of land bird. Today we know
that at least six species of land bird used to live on the island. As the
Easter Islanders destroyed their stocks of food and timber, they began to
starve, and the population crashed, dropping perhaps 90 percent. Easter
Island culture descended into warfare and eventually cannibalism.

The author Thomas Homer-Dixon has coined the phrase “ingenuity
gap” to describe the gap in difficulty between the problems faced by a
society and that society’s capacity to solve problems. What happened to
the Easter islanders is that they were overcome by the ingenuity gap
facing their society, unable to find solutions to the problems they had
created. That ingenuity gap caused the collapse of their civilization.

Modern global society faces its own ingenuity gap. We have problems
such as HIV/AIDS, which reduces average life expectancy in the most
highly affected African countries by 6.5 years, from 54.8 years to 48.3
years. We have the problem of nuclear weapons, with a nuclear-armed
India and Pakistan arguing over Kashmir, and the world’s two new
superpowers, China and India, vying for supremacy in Asia. As nuclear
proliferation continues, the number of plausible nuclear conflicts is
rapidly rising. We face potential shortages of oil and water, and the
possibility of future bio-terrorism. And, of course, there’s the best-known
existential threat of our time, human-caused climate change. Many of
these are problems that we understand scientifically. But just because we
understand the problems and their solutions at a factual level doesn’t
mean we can muster the collective ability to take action. We are lacking
the institutional ingenuity necessary to turn our knowledge into real
solutions. Today, online tools are giving us an opportunity to create new
institutions to change and redefine the relationship between science and
society. It is my hope that this opportunity will help us create a more
resilient society and, in the memorable phrasing of Hassan Masum and
Mark Tovey, bridge the ingenuity gap.



CHAPTERS8



The Challenge of Doing Science in the Open

Late in the year 1609, Galileo Galilei pointed one of his newly built
telescopes up at the night sky and began to make one of the most
astonishing series of discoveries in the history of science. Galileo’s first
major discovery, made in January of 1610, was of the four largest moons
of Jupiter. Today, this discovery perhaps seems unremarkable, but it
caused the biggest change to our conception of the universe since ancient
times. The discovery became a sensation, and Galileo was feted
throughout Europe. It also brought him the patronage of one of the
wealthiest men in Europe, the Grand Duke of Tuscany, Cosimo de’
Medici.

With fame and patronage came pressure to repeat his success, and
Galileo wanted more discoveries to match the moons of Jupiter. He
didn’t have long to wait. Shortly before dawn on the morning of July 25,
1610, Galileo pointed his telescope at Saturn, and observed that it wasn’t
just a single round disk, as had hitherto been thought. Instead, alongside
Saturn’s main disk he saw two small bumps, one on either side of the
main disk, making it look as though Saturn consisted not just of one
body, but rather of three. Those two bumps on either side of the main
disk were the first ever hint of the rings of Saturn. Unfortunately for
Galileo, his telescope wasn’t quite good enough to clearly resolve the
rings. That would have to wait for the Dutch scientist Christiaan
Huygens, in 1655. Still, this was another momentous discovery, and
Galileo is often credited, along with Huygens, as the discoverer of the
rings.

Eager to claim the credit for his new discovery, Galileo immediately
sent out letters to several of his colleagues, including his great colleague
and rival, the astronomer Johannes Kepler. Galileo’s letter to Kepler (and
his other colleagues) was peculiar. Instead of explaining forthrightly
what he had seen, Galileo explained that he would describe his latest
discovery in the form of an anagram:
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By sending this anagram, Galileo avoided revealing the details of his
discovery, but at the same time ensured that if someone else—such as
Kepler—Ilater made the same discovery, Galileo could reveal the
anagram and claim the credit. This bought him time in which he alone
could build upon the discovery. At the same time Galileo also wrote to
his patrons, the Medici. But in that letter, eager to keep his patrons
happy, Galileo disclosed the full details of his discovery, asking the
Medici to keep it secret for the time being. This state of affairs lasted a
little over three months, until at the request of Kepler’s patron, the Holy
Roman Emperor Rudolph II, Galileo relented and revealed that the
anagram was the Latin “Altissimum planetam tergeminum observavi,”
meaning, roughly, that he had observed the highest of the planets
(Saturn) to be three-formed.

There is an amusing coda to this story. After Galileo’s discovery of the
four moons of Jupiter, Kepler developed a theory that Mars must have
two moons, on the grounds that Earth had one moon, Jupiter had four,
and Mars was the planet between Earth and Jupiter. When Kepler
received Galileo’s anagram about Saturn he worked hard to decipher it,
and finally decoded it as “Salve umbistineum geminatum Martia proles,”
meaning, roughly, “Be greeted, double knob, children of Mars.” Aha,
thought Kepler, Galileo must have seen the two moons of Mars! Kepler
wasn’t sure, though, because one letter in Galileo’s anagram went
unused. Alas for Kepler, the discovery of the two moons of Mars had to
wait until 1877, when far more powerful telescopes were available.

The First Open Science Revolution

Galileo wasn’t the only great scientist of the age to use anagrams to
announce discoveries. Newton, Huygens, and Hooke all used anagrams
or ciphers for similar purposes. In fact, many scientists of the time were
reluctant to publicize their discoveries in any way at all. The infamous
Newton-Leibniz controversy over who invented calculus occurred in part
because Newton claimed to have invented calculus in the 1660s and
1670s, but didn’t publish a full account of his discoveries until 1693. In



the meantime, Leibniz developed and published his own version the
calculus. Imagine modern biology if publication of the base pairs in the
human genome had been delayed by 30 years, or if the base pairs had
been announced as an anagram (“AACCGGGT . . . ,” say, instead of
“CGTCAAGG. . .")?

Why were Galileo, Newton, and other early scientists so secretive? In
fact, a secretive culture of discovery was a natural response to the
conditions of the time. There was often little personal gain for scientists
in sharing discoveries, and much to lose. Early in his career, Galileo
made the mistake of showing a military compass he had invented to a
young man named Baldassare Capra. Baldassare later claimed the
discovery as his own, and accused Galileo of plagiarism. It took Galileo
years of effort and considerable expense to regain the credit for his
discovery, not to mention his reputation. No wonder he was so secretive
in the matter of Saturn being “three-formed.”

Such secretive behavior looks peculiar to our modern eyes. Today,
when scientists make a discovery, they share their results as rapidly and
as widely as possible, by publishing those results in a scientific journal.
For really significant breakthroughs, the scientists involved may write a
paper and submit it to a journal in a matter of days. Some scientific
journals offer expedited publication services for major papers, promising
to publish them within a few weeks after submission. Of course, the
reason today’s scientists are so eager to share their results is that their
livelihoods depend upon it: when a scientist applies for a job, the most
important part of the application is their record of published scientific
papers. The phrase “publish or perish” has become a cliche in modern
science because it succinctly expresses a core fact of scientific life.
Modern scientists take this connection between publishing and career
success for granted, but in 1610, when Galileo made his string of great
discoveries, no such connection existed. It couldn’t exist, because the
first scientific journals weren’t started until 55 years later, in 1665.

What caused this change from a closed, secretive culture of discovery
to the modern culture of science, where scientists are eager to publish
their best results as quickly as possible? What happened is that the great
scientific advances in the seventeenth century motivated wealthy patrons
to begin subsidizing science as a profession. This motivation came in
part from the public benefit delivered by scientific discoveries, and also
in part from the prestige conferred on leaders (such as the Medici) by
association with such discoveries. Both motives were best served if
discoveries were widely shared through a medium such as the scientific



journal. As a result, patrons demanded a shift toward a scientific culture
in which it i1s the sharing of discoveries that is rewarded with jobs and
prestige for the discoverer. This transformation was just beginning in the
time of Galileo, but two centuries after Galileo’s death the culture had
changed so much that when the great nineteenth-century physicist
Michael Faraday was asked the secret of his success, he replied that it
could be summed up in three words: “Work. Finish. Publish.” By that
time a discovery not published in a scientific journal was not truly
complete.

The transformation from a closed, secretive culture of discovery to the
more open culture of modern science was one of the most momentous
events in history. It resulted in the widespread adoption and growth of
the scientific journal system. That system, modest at first, has blossomed
into a rich body of shared knowledge for our civilization, a collective
long-term memory that is the basis for much of human progress. This
system for sharing knowledge has worked tremendously well, and has
changed only slowly over the past 300 years.

Today, as we’ve seen, online tools present a new opportunity, an
opportunity to create a collective short-term working memory, a
conversational commons for the rapid collaborative development of
ideas. At the same time, these tools give us an opportunity to greatly
extend and enrich our collective long-term memory. These are
tremendously exciting and promising opportunities. We’ve already seen
how open data from projects such as the Sloan Digital Sky Survey is
laying the groundwork for a data web that will change the way we
explain the world. And we’ve seen how projects such as Galaxy Zoo,
Foldit, and the arXiv are changing the relationship between science and
society. But although such examples are encouraging, they fall far short
of the potential of networked science. There’s a fundamental bottleneck
that must be overcome for that potential to be realized. We glimpsed that
bottleneck earlier, in the reluctance shown by some scientists to share
their data, and in the early lack of interest scientists showed in
Wikipedia. Unfortunately, these are not isolated examples, but rather are
symptomatic of a more deeply rooted resistance many scientists have to
working online. This resistance is holding science back in much the same
way that the secretive culture of discovery inhibited science in the
seventeenth century. To understand the nature of that resistance, let’s
take a closer look at some promising-but-failed examples of online tools
for scientists.



Science Wikis

Although scientists were reluctant to contribute to Wikipedia in its
early days, as Wikipedia has grown, it has inspired several scientists to
introduce wikis focused on scientific discovery. An example of such a
project is the qwiki (short for “quantum wiki”), set up in 2005 by John
Stockton, then a PhD student at the California Institute of Technology
(Caltech). Unlike Wikipedia, which aims at a general audience, the qwiki
was aimed at professional scientists working in the field of quantum
computing. Stockton’s goal for the qwiki was to provide a single,
centralized reference describing all the latest research in quantum
computing and related areas, a sort of rapidly evolving, constantly
updated super-textbook. But the qwiki had the potential to go far beyond
a textbook: it would be infinitely extensible and modifiable, capable of
conveying material ranging from simple introductions of key concepts
all the way up to detailed explanations of the latest research results and
pointers to unsolved problems at the research frontier. It could include
animations and interactive simulations to illustrate key concepts of
quantum computing, as well as source materials so other people could
further improve those animations and simulations. It could become a
locus for Polymath-style collaboration, with theoreticians gathering to
attack the deepest theoretical problems of quantum computation, in a
new kind of wiki-science. Or experimentalists could gather to share best
practices, all the subtle, hard-to-describe details of experiments that often
remain tacit knowledge, making it difficult to reproduce results from one
laboratory to the next. Even if this vision was only partially realized, the
impact on the field of quantum computing would be extraordinary.

The launch of the qwiki was at a workshop I happened to attend, held
at Caltech in 2005. ch caused quite a buzz. In conversation during breaks
at the workshop, I heard some people express optimism that the qwiki
might do for the specialist knowledge of quantum computing what
Wikipedia and Google have done for general knowledge. Unfortunately,
that optimism didn’t translate into a willingness by those people to
contribute. Instead, they hoped someone else would take the lead. After
all, why contribute to the qwiki when you could be doing something
more useful to your own career, like writing a paper or a grant? Why
share your latest and best ideas on the qwiki, when that would only help
your competitors? And why contribute to the qwiki when i1t was still in



its beginning stages, and it wasn’t yet clear whether it would flourish?
The only part of the qwiki that really thrived was the “Researcher
pages,” vanity pages where individual scientists could add descriptions
of themselves and their work. Many scientists were happy to spend an
hour or two (and, in some cases, more) fleshing out these vanity pages.
But few were willing to spend even ten minutes adding material to other
parts of the qwiki. It just wasn’t a priority. The result is that today, six
years after its launch, the qwiki has failed. Only a few pages of the qwiki
are updated with any regularity. Spammers roam the site, adding links to
shady products. Nearly all the scientific content on the site was put there
by Stockton himself, by people working in the same lab, or by Stockton’s
successor as maintainer of the qwiki, Stanford University graduate
student Anthony Miller. This failure wasn’t due to any lack of
enthusiasm or capability on Stockton’s or Miller’s part. They worked
hard, adding great quantities of excellent material to the qwiki, and
encouraging others to help out. Unfortunately, although many scientists
believed such a site had the potential to be a tremendous resource, few
were willing to contribute content.

The mindset behind the failure of the qwiki is similar to the mindset |
described in the opening chapter of this book, the mindset that makes
scientists reluctant to share their data, or to contribute to Wikipedia. At
the root of the problem is the monomaniacal intensity that ambitious
scientists must bring to the pursuit of scientific publications and grants.
For young scientists, especially, this is an intensity borne of the fierce
competition for scientific jobs. For example, each year 1,300 people earn
physics PhDs from US universities, but only 300 faculty positions in
physics open up. At the same time, many PhD programs drum into
young scientists the idea that “success” means getting a faculty position
at a research-oriented university, and anything else is a failure. The result
is a tremendous logjam of scientists trying desperately to get faculty
positions. As a young scientist you’re not just competing against the
other 1,299 newly minted PhDs, you’re also competing with people from
previous years who are still trying to get faculty jobs. As a result, many
young scientists experience great and protracted anguish at their failure
to get a faculty job. Even at mid-level universities, a job opening can
easily draw more than 100 applicants. In such a competitive
environment, 80-plus-hour workweeks are common, and as much time as
possible is devoted to the goal that will result in a position at a top
university: an impressive record of scientific papers. The papers also
bring in the research grants and letters of recommendation necessary to



be hired. Scientists who already have tenured positions continue to need
grant support, which requires a strong work ethic still focused on
producing papers. Given all this, how could a scientist possibly have the
time to contribute to efforts such as the qwiki? They may agree in
principle that they’d like the qwiki to succeed, but in practice they’re too
busy writing papers and grant proposals to ave any time to contribute
themselves.

The qwiki is just one of many science wikis that have been launched.
Similar efforts have been made to develop wikis for genetics, string
theory, chemistry, and many other subjects. Like the qwiki, many of
these science wikis had great potential, and some generated considerable
buzz and optimism in their fields. But most have failed to take off,
foundering beneath scientists’ lack of time and motivation to contribute.
Those science wikis that do succeed are usually in a supporting role for
some more conventional project. Many laboratories, for example, run
internal wikis as a way of storing reference materials for their
experiments. Another successful wiki comes from the Polymath Project,
which uses its wiki as a place to distill the most valuable insights from
the Polymath collaboration. The Polymath wiki has attracted many
thousands of edits, by more than 100 users, and at peak times attracts
dozens of edits and thousands of pageviews per day. (Note that I set up
the Polymath wiki, and am not an independent judge of its success.)
Again, though, the Polymath wiki is in support of a conventional goal:
solving a mathematical problem and writing a paper. In each of these
cases, the wiki has not been an end in itself. Wiki-science, as promising
as it might be, remains a dream.

User-Contributed Comment Sites for Science

It’s not just science wikis that are failing. Several organizations have
created user-contributed comment sites where scientists can share their
opinions of scientific papers, and so help other scientists decide which
papers are worth reading, and which aren’t worth the effort. The idea is
similar to sites such as Amazon.com, which collect customer reviews of
books, electronic gadgets, and other products. As anyone who’s ever
used Amazon.com knows, the reviews can be very helpful when



deciding whether to buy a product. Maybe something similar would be
helpful for scientists?

The user-contributed comment site with the highest profile was
created by one of the most prestigious publishers in science, Nature. In
2006, Nature launched a site where scientists could write open comments
on papers that had been submitted to Nature. Despite much effort and
publicity, the trial was not a success. The final report terminating the trial
explained:

There was a significant level of expressed interest in open peer
review. . . . A small majority of those authors who did participate [in
the trial] received comments, but typically very few, despite
significant web traffic. Most comments were not technically
substantive. Feedback suggests that there is a marked reluctance
among researchers to offer open comments.

In other words, while lots of people wanted to read comments about
other people’s papers, almost no one wanted to actually write comments.

The Nature trial is just one of many attempts to build user-contributed
comment sites for science. Physics, in particular, has seen many such
sites, perhaps because it was the first field to broadly adopt the web as a
way of distributing scientific papers. The first attempt was the site Quick
Reviews, which came online in 1997, and was discontinued for lack of
use in 1998. A similar site, Physics Comments, was built a few years
later, but suffered the same fate, being discontinued in 2006. A still more
recent site, Science Advisor, 1s still active, but has more members
(1,240) than reviews (1,119) as I write. It seems that many scientists
want to read comments on scientific papers, but very few want to
volunteer to write such comments.

Why are the user-contributed comment sites failing? In principle, most
scientists agree that it would be tremendously useful if thoughtful
commentary on scientific papers was widely available. But if that’s true,
then it seems like a puzzle that these sites—many of them well designed
and well supported—tfail, when the comment sections on sites such as
Amazon.com thrive. The problem the scientific comment sites have is
that while thoughtful commentary on scientific papers is tremendously
useful for other scientists, that doesn’t mean it’s in anyone’s individual
best interest to write comments. Imagine how things look from the point
of view of an individual scientist considering commenting on such a site.
Why write a comment when you could be doing something more useful



to you individually, like writing a paper or a grant? Even if you did write
a comment, you’d likely be reluctant to publicly criticize someone else’s
paper. After all, the person you criticize might be an anonymous referee
in a position to scuttle your next paper or grant application.

The contrast between the failures of the user-contributed comment
sites for science and the success of the Amazon.com reviews is stark. To
pick just one example, you’ll find more than 1,500 reviews of Pokemon
products at Amazon.com, more than the total number of reviews on all
the science comment sites I described above. You may object that there
are more people who buy Pokemon products than there are scientists.
That’s true. But there are still more than a million professional scientists
in the world, and those scientists spend much of their working lives
forming opinions of papers written by others, far more time than even
the most enthusiastic parents can spend on Pokemon. It’s a ludicrous
situation: popular culture is open enough that people feel a desire to
write Pokemon reviews, yet scientific culture is so closed that scientists
won’t publicly share their opinions of scientific papers in an analogous
way. Some people find this contrast curious or amusing; I believe it
signifies something seriously amiss with science.

The Modern Challenge for Open Science

The failure of the science wikis and the user-contributed comment
sites for science is part of a much larger pattern. Projects such as the
Polymath Project, Galaxy Zoo, and Foldit have all been very successful,
but that success has come in part because of a fundamental conservatism:
all of them ultimately aim to produce scientific papers. Tools such as the
science wikis and user-contributed comment sites break away from this
conservatism, since contributions to such sites are ends in themselves,
and don’t directly result in scientific papers. Unfortunately, the result is
that career-minded scientists have little incentive to contribute to such
sites, and instead focus their efforts on doing what is rewarded: writing
papers. The grand ideas for amplifying collective intelligence that we
discussed in part 1 have little chance to thrive when incremental ideas
such as science wikis and user-contributed comment sites are already
beyond the pale. Many of the tools with the potential to most



dramatically change and improve how science is done are simply
nonstarters. It’s no accident that so many of the best examples of
amplifying collective intelligence in part 1 came from outside science;
too often scientists are lagging, not leading in the development of new
tools for the production of knowledge. And although we have seen some
impressive science-oriented projects, they explore only a tiny fraction of
the landscape of possibilities. We’re missing a giant opportunity.

Indeed, even the possibilities that are being explored are not thriving
as they should. While undertakings such as the Sloan Digital Sky Survey
and the Human Genome Project are opening up their data to other
scientists, the data from the great majority of scientific experiments
remains closed. Scientists typically have little incentive to disclose their
data, and so instead they hoard it. In the words of medical researchers
Elizabeth Pisani and Carla AbouZahr, in science it’s “publish [papers] or
perish,” not “publish [data] or perish.” And as long as that remains true,
much of the world’s scientific knowledge will remain locked up,
preventing the scientific data web from reaching its full potential.

Equally concerning are the disincentives for scientists to develop new
online tools. While I was writing this book, a well-known physicist told
me that Paul Ginsparg, the physicist who created the arXiv, had “wasted
his talent” for physics by creating the arXiv, and that what Ginsparg was
doing was like “garbage collecting”: it was good that someone was doing
it, but beneath someone of Ginsparg’s abilities. Keep in mind that this
astonishing narrow-mindedness was coming from a person who uses the
arXiv every day. Ginsparg has perhaps done more for physics (not to
mention the rest of humanity) than any other physicist of his generation.
Yet sentiments such as these are often voiced privately by scientists.
People who build tools such as the arXiv are dismissed as “mere” tool
builders, as though it is somehow unworthy to be building tools that
speed up the whole process of doing science. This lack of regard extends
to the institutional level, where there is often little support for building
new tools. Projects such as Galaxy Zoo and the arXiv often begin with
little or no funding, in part because their first stage involves creating a
tool, not writing a paper. How can ideas such as citizen science and the
data web reach their potential in an environment where building new
tools is held in such low regard?

The overall pattern, then, is that networked science is being strongly
inhibited by a closed scientific culture that chiefly values contributions in
the form of scientific papers. Knowledge shared in nonstandard media
isn’t valued by scientists, regardless of its intrinsic scientific value, and




so scientists are reluctant to work in such media. The potential of
networked science—ideas such as the data web, citizen science, and
collaboration markets—is thus remaining unrealized. To reach its full
potential, networked science must be open science.

The irony in all this is that the value of openly sharing scientific
information was deeply understood by the founders of modern science
centuries ago. It was this understanding that led to the modern journal
system, a system that is perhaps the most open system for the
transmission of knowledge that could be built with seventeenth-century
media. The adoption of that system was achieved by subsidizing
scientists who published their discoveries in journals. But that same
subsidy now inhibits the adoption of more effective technologies,
because it continues to incentize scientists to share their work in
conventional journals, while there is little or no incentive for them to use
or develop modern tools. Indeed, when the scientists of today resist
sharing their data and ideas, they are unconsciously echoing the behavior
of Galileo, Newton, and company, with their secrecy and their anagrams.
It may be a practical response to immediate personal concerns, but over
the long run it’s the wrong way to do science.

To take full advantage of modern tools for the production of
knowledge, we need to create an open scientific culture where as much
information as possible is moved out of people’s heads and laboratories,
and onto the network. This doesn’t just mean the information
conventionally shared in scientific papers, but a//l information of
scientific value, from raw experimental data and computer code to all the
questions, ideas, folk knowledge, and speculations that are currently
locked up inside the heads of individual scientists. Information not on the
network can’t do any good.

In an ideal world, we’d achieve a kind of extreme openness. That
means expressing all our scientific knowledge in forms that are not just
human-readable, but also machine-readable, as part of a data web, so
computers can help us find meaning in our collective knowledge. It
means opening the scientific community up to the rest of society, in a
two-way exchange of information and ideas. It means an ethic of
sharing, in which all information of scientific value is put on the
network. And it means allowing more creative reuse and modification of
existing work. Such extreme openness is the ultimate expression of the
idea that others should be able to build upon and extend the work of
individual scientists, perhaps in ways they themselves would never have
conceived. In practice, there will need to be some limits—think of



concerns such as patient confidentiality in medical research—and we’ll
discuss those limits in the next chapter. But even within those limits, the
openness | am advocating would be a giant cultural shift in how science
1s done, a second open science revolution extending and completing the
first open science revolution, of the seventeenth and eighteenth centuries.
In the next chapter, we’ll discuss how this more open culture can be
achieved.

An Aside on Commercialization and Secrecy in
Science

In this chapter, we’ve seen how scientists’ strong commitment to
papers as the ultimate expression of scientific discovery is inhibiting new
and better ways of doing science. But for some scientists there’s an
additional inhibition, and that’s a need for secrecy because they’re
pursuing patents and commercial spin-offs from their work. As an
example, from 2001 to 2003 I was part of a large research center
working on quantum computing. Although the center was a long way
from producing a commercial product, the center’s leaders hoped that
one day there would be such spin-offs. When scientists attended research
seminars at the center, they were (for a while) asked to sign
nondisclosure agreements promising not to talk with other people about
the content of the seminars. Many scientists at the center meticulously
documented their work in notebooks where each page was dated and
signed by center officials, to help establish priority in the event of later
patent applications. Such secretiveness may help lead to commercial
success. But it’s impossible for such a culture to coexist with the open
collaborative atmosphere that is seen in, for example, the Polymath
Project, or that is required for wiki-, ato succeed.

Such commercially driven secrecy is relatively new in our universities,
where most basic research is done. Indeed, until quite recently,
universities focused most of their scientific research effort on basic
research without immediate commercial application. This has changed
over the past few decades, in large part because of a piece of legislation
called the Bayh-Dole Act, passed by the US Congress in 1980. What



Bayh-Dole did was to give US universities (rather than the government,
as was formerly the case) ownership of patents and other intellectual
property produced with the aid of government grants. After Bayh-Dole
passed, many universities began to broaden their focus beyond basic
research, supporting more applied research in the hope of making money
from commercial spin-offs. Simultaneously, and for the same reason,
there was also an increase in patents related to the basic research
conducted at universities. Many other countries have followed the US
lead and passed legislation similar to Bayh-Dole, with a similar effect on
their research culture. The success of these efforts is questionable—
many universities actually lose money attempting to commercialize their
research—but interest in commercialization and intellectual property has
nonetheless made many scientists more secretive.

This commercially driven secrecy is a big cultural shift in our
universities. Historically, before Bayh-Dole and similar legislation, the
results of basic science were usually (eventually) openly disclosed, in the
form of papers, in the belief that an improved understanding of how the
world works would benefit everyone over the long run. For instance,
basic research on electricity and magnetism was the foundation for
inventions such as motors and electric lighting and radio and television.
Basic research on quantum mechanics was crucial for the semiconductor
industry. It’s the familiar idea that a rising tide floats all boats. And so
there was a fairly clean split in our innovation system. On one side was
the basic research system, whose ultimate results were shared publicly as
research papers, on the grounds that over the long term everyone would
gain. On the other side was privately funded applied research that aimed
at short-term product development, and that was often carried out in
secret. Bayh-Dole has begun to break this division down, and today
governments and grant agencies increasingly see the pursuit of patents
and other intellectual property as a major reason to support basic
research.

This change 1s a genuine impediment to the open sharing necessary for
networked science to thrive. However, we should keep the size and scope
of this impediment in proper perspective. While writing this book, I
sometimes spoke with people who assumed that commercially driven
secrecy 1s the single biggest obstacle to open science. That is incorrect.
In large parts of basic science, scientists’ concerns about
commercialization are decidedly secondary compared to their relentless
focus on conventional publication. Commercialization and patent rights
are welcome if they come, but career success comes by earning the



esteem of peers through publication. This is most evident in job
applications: scientists often list a few patents or spin-offs resulting from
their work, but the emphasis is on papers, papers, papers, and grants,
grants, grants. This is true in large parts of physics and astronomy, in
mathematics, in substantial parts of chemistry, biology, and in many
other fields of science. In these fields, the immediate obstacle to open
science isn’t commercialization, it’s a culture that only values and
rewards the sharing of scientific knowledge in the form of papers.

In a few areas of basic science, commercially driven secrecy is
paramount. This is true in some of the early-stage work that may lead to
later drug development, for instance. In such fields, science will likely
remain a closed, secretive affair. And there is a much larger gray area in
basic science where concerns about commercial secrecy are a factor, but
not always a dominant factor. The real problem is scientific work that
could in principle be open, but where unfounded hopes of later patents
impede open science. Over the long run, there is a conversation to be had
about the role of intellectual property in basic science. But the
foundation for open science, the place where we should start, is with a
change in the culture of science so that it doesn’t just value and reward
the writing of papers, but also new ways of sharing. That’s the most
crucial problem, and it’s to that problem we now turn.



CHAPTER9



The Open Science Imperative

Imagine you’re a working scientist who believes wholeheartedly that
open science will bring enormous benefits to science and to our society.
You understand that changing the deeply entrenched culture of science
will be difficult, but decide nonetheless to go all out sharing your ideas
and data online, contributing to new tools such as science wikis and user-
contributed comment sites, and making the code for your computer
programs freely available. All this takes a great deal of time and effort,
and yet you find that without colleagues willing to reciprocate, the
benefits to you are small. That’s because many of the benefits of open
science only come if it is collectively adopted by large numbers of
scientists. And as just one scientist you can’t compel everyone else to do
open science.

A typical experience is that of my colleague and former student Tobias
Osborne, now of the University of Hannover in Germany. Eager to try
out open science, for six months Osborne carried out much of his
research on quantum computing in the open, on a blog. He wrote many
thoughtful posts, full of insightful ideas, and his blog attracted a
following in the quantum computing community, with more than 50
regular readers. Unfortunately, few of those readers were willing to
provide much feedback on Osborne’s posts, or to share their own ideas.
And without a community of engaged colleagues, it was a lot of effort to
work in the open, for only a small return. Osborne ultimately concluded
that open science won’t succeed because it “would require most
scientists to simultaneously and completely change their behaviour.”
Experiences such as this make open science seem like a hopeless cause.

Although it’s true that it will be difficult to move toward open science
through direct action by individual scientists, that doesn’t mean other
approaches can’t succeed. Our society has solved many problems
analogous to the open science problem, problems where direct individual
action doesn’t work, and benefits only come if many people in a large
group simultaneously adopt a new way of doing things. An example is



the problem of which side of the road to drive on. If you live in a country
where people drive on the left, you can’t one day start a movement to
drive on the right merely by swapping the side you personally drive on.
But that doesn’t mean it’s not possible for everyone to switch
simultaneously. That’s exactly what happened in Sweden on September
3, 1967, at 5 am. There were good reasons for the Swedes to switch: the
people in neighboring countries already drove on the right, and in
addition, most vehicles in Sweden were already left-hand drive, making
driving on the right actually safer. But, as with open science, the mere
fact that driving on the right would be better wasn’t enough to cause a
change through direct action by individuals. Instead, it required an
extended campaign by the government, and a change in the law.

Changing sides of the road seems far removed from changing the
culture of science. But, in fact, the first open science revolution required
a similar type of collective action. We’ve seen how seventeenth century
scientists often kept their results to themselves—unless you count
sending anagrams as sharing! When the scientific journal system was
first introduced, many scientists were suspicious, unwilling to share their
results with others in a new medium. While individual scientists could
see that science as a whole would progress more quickly if al/l scientists
shared news of their discoveries freely, that didn’t mean it was in their
individual best interest to publish in the journals. This posed a problem
for the editors of early journals, people such as Henry Oldenburg, who
founded the world’s first scientific journal, the Philosophical
Transactions of the Royal Society, in 1665. Oldenburg’s biographer,
Mary Boas Hall, tells of how Oldenburg would write to the scientists of
the day and “beg for information,” sometimes writing simultaneously to
two competing scientists on the grounds that it would be “best to tell A
what B was doing and vice versa, in the hope of stimulating both men to
more work and more openness.” In this way, Oldenburg provoked some
of the most eminent scientists of his day, including Newton, Huygens,
and Hooke, to publish in the Philosophical Transactions. The need for
such subterfuge ceased only after decades of work by Oldenburg and
others to change the culture of science.

The common pattern underlying the problem of switching sides of the
road and the problem of open science—both today and in the
seventeenth century—is that the interests of individuals aren’t naturally
aligned with the collective group interest. Someone who believes
“everyone should do this” e.g., open science or switching sides of the
road, doesn’t necessarily also believe “I should do this, even if no one



else does.” Social scientists call problems like this collective action
problems. The trick to solving collective action problems is to figure out
ways of aligning individual interest with the collective interest. In the
case of Sweden’s switch to the right, the solution was to use the
government’s legitimacy—expressed, in part, through the force of law—
to compel people to switch. One day it was in people’s individual best
interest to drive on the left, while the next day it was in their interest to
drive on the right. Similarly, the genius of the first open science
revolution was to align individual and collective interest by rewarding
scientists for sharing their discoveries in scientific journals. The problem
today is that while it’s now in the collective interest for scientists to
adopt new technologies, their individual interests remain aligned with
journal publication. We need to bring the individual interest back into
alignment with the collective interest.

The good news is that a lot 1s known about how to solve collective
action problems. Writing in the 1960s, the political economist Mancur
Olson analyzed what n thled the “logic of collective action,” trying to
understand the conditions under which individuals in a group will work
together in their collective interest, and those under which they will not.
In the 1990s, the political economist Elinor Ostrom substantially
deepened Olson’s analysis for a particular type of collective action,
namely, how groups can work together to manage resources that they
hold in common, such as water and forests. The books Olson and Ostrom
wrote describing their work are among the most frequently cited books
ever in the social sciences, and the work has been so influential that
Ostrom was awarded the 2009 Nobel Prize in Economics.

I mention this work as an antidote to pessimism about open science.
Some very clever people have spent a great deal of time investigating
real-world examples where collective action problems have been solved,
and have thought hard about how the strategies used in those examples
can be generalized to solve other collective action problems. What
Olson, Ostrom, and their colleagues have shown is that while solving
collective action problems is difficult, it’s not impossible. Before we give
up on open science, we should draw on these ideas. We’ll now look at
two strategies that can be used to shift the culture of science. Neither
strategy 1s a quick fix, but with enough imagination and determination
these strategies can make science far more open. Although my account is
based on the work of Olson and Ostrom and their successors, I won’t
make the connections explicitly, since this isn’t a textbook on political
economy. If you’re interested in exploring the connections further, please



see “Selected Sources and Suggestions for Further Reading,” beginning
on page 217.

Compelling Open Science

Earlier in this book we discussed the open access policies that some
scientific grant agencies are introducing, in order to make the results of
scientific research broadly available. Recall, for example, that the US
National Institutes of Health (NIH) now requires scientists to make their
papers openly accessible within 12 months of publication. Scientists who
don’t agree to this condition must look elsewhere for funding. It’s a
policy of compulsion, similar to the strategy used by the Swedish
government to switch sides of the road. In this way, powerful
organizations such as governments and grant agencies can cause
everyone in a community to simultaneously change their behavior.

Following on from their open access policies, several grant agencies
now require scientists to openly share their data. These open data
policies are in the spirit of the Bermuda Agreement to share human
genetic data (see page 7), but broader in scope. There are a lot of ways
this is happening; so let me describe just a few snapshots. In narrowly
focused areas such as genomics, the policies can be quite demanding.
Earlier in the book, on page 3, we saw how genomics can be used to
figure out links between genes and disease; the resulting studies are
called genome-wide association studies (GWAS). In 2007 the NIH
instituted a policy requiring that data from GWAS be made openly
available, subject to some restrictions to ensure participant privacy.
Another major funder of genomics research, the Wellcome Trust, now
requires all genetic data to be made openly available, again subject to
privacy and similar concerns. Furthermore, these agencies specify which
online databases the data should be uploaded to, in what formats, and so
on.

Broader policies on data sharing are usually less specific. For instance,
since 2006 the UK Medical Research Council has required all scientists
it funds to make their data openly available, provided that doesn’t violate
any ethical or legal regulations. But this policy doesn’t specify exactly
how or where data should be made available. Many open data policies



are still in early stages of development. For instance, since January of
2011 the US National Science Foundation has required grant applications
to include a two-page data management plan. It’s not a full-fledged open
data policy, but a spokesperson said this announcement was merely
“phase one” of an effort to ensure that all data be openly accessible.
Overarching all this, at the highest political levels there is a growing
understanding of the value of open data. For instance, in 2007 the
Organization for Economic Co-operation and Development (OECD)
recommended that member countries make publicly funded research data
openly accessible. Such recommendations take time to filter down, but
over time they can have an impact.

Open access and open data policies are powerful steps toward open
science, the sorts of steps that are difficult for individual scientists to
take on their own. The grant agencies are the de facto governance
mechanism in the republic of science, and have great power to compel
change, more power even than superstar scientists such as Nobel
prizewinners. The behavior of many scientists is dictated by the golden
rule: them that have the gold make the rules. And the big grant agencies
have the gold. If the people running the grant agencies decided that as
part of the granting process, grant applicants would have to dance a jig
downtown, the world’s streets would soon be filled with dancing
professors. Now, many people—including many grant officers—find
fault with this system, believing that it is too centralized and controlling.
But as a practical matter, the grant system presently rules much of
science, and if the grant agencies decide to take open science seriously,
so too will scientists. Imagine, for example, that one of the big grant
agencies began asking applicants to submit evidence of public outreach
using blogging and online videos. Or suppose they started asking
applicants to describe their contributions to science wikis, as evidence of
research activity. Such policies would do much to legitimize new tools.

Although grant agencies can help new tools become accepted, they
don’t have unlimited power to impose open science on scientists. Recall
again the story of the Bermuda Agreement for the sharing of human
genetic data. Those principles weren’t merely imposed by fiat on
molecular biologists by some central granting agency. Instead, leaders in
the molecular biology community gathered in Bermuda, where they
agreed that it would be in the whole community’s best interest to share
data. Essentially, individual scientists were saying, “We’d like to go open
—but only if everyone else does too.” The granting agencies then helped
achieve that end by enforcing the policy of openness. But part of the



reason the policy was so effective was because it already had the support
of leading molecular biologists. A similar situation occurred in Sweden,
where the switch to the right-hand side of the road was only made after a
decades-long public discussion of the idea.

To be successful, grant agencies can’t merely compel openness, they
must also forge consent and agreement within the scientific community.
If they don’t do this, it’s too easy for scientists to respond by following
the letter of grant agency requirements, but not the spirit. Imagine future
scientists releasing “open” data sets that are so poorly documented that
they’re useless to anyone else. It’s one thing for a scientist to dump raw
data online in some obscure location. It’s quite another to carefully
document and calibrate that data, to integrate it with other scientists’
data, and to actively encourage other scientists to find new uses for it.
That’s what it will take for the scientific data web to succeed. More
generally, for networked science to reach its full potential, scientists must
make an enthusiastic, wholehearted commitment to new ways of sharing
knowledge. For that to happen, grant agencies must work individually
with scientific communities, talking at length with scientists in each
community about ways that community could become more open. Are
there data that could be systematically shared? What about computer
code? What about people’s questions and ideas and folk wisdom? What
else could be shared? How quickly could it be shared? What new tools
need to be developed to make this effective? If the grant agencies do this,
they can act as catalysts for Bermuda-style agreements to share scientific
knowledge. And, having forged such agreements, they can then express
them in policy. This will be long, slow work, but the payoff will be a
tremendous cultural shift toward more openness.

Incentivizing Open Science

The prospect of the grant agencies saying “Thou shalt work more
openly” leaves me, as a scientist, with mixed feelings. While it will
promote the use of new tools, it won’t cause truly enthusiastic adoption
of those tools by scientists, unless we also create new incentives to use
those tools. Today’s scientists show a relentless drive to write papers
because that’s what’s valued by the scientific community. We need new



incentives that create a similar drive to share data, code, and other
knowledge. How can we make sharing knowledge in new ways just as
imperative for scientists as publishing papers is today?

It helps to look at this question in economic terms. In a conventional
economy, if I trade you a sofa in return for some cash, you gain a sofa,
and I lose a sofa. But scientific discoveries are different. If I share news
of a discovery with you, I don’t lose my knowledge of that discovery.
This kind of sharing is great for society as a whole, but it has a problem
from the point of view of the original discoverer: if they are not
recompensed, they have much less reason to invest time and effort to
come up with the discovery in the first place.

The solution to this problem adopted by the scientific community in
the seventeenth century (and still used today) is brilliant. Instead of
giving people exclusive rights to their ideas, as in a conventional
economy, we have created an economy based on reputation. Scientists
openly share their discoveries by publishing them in scientific papers—
essentially, giving them away—but in return they get the right to be
credited as the discoverer. By being so credited they can build up a
reputation, which can be turned into a paying job. It’s a type of property
rights in ideas, leading to an economy based on reputation, and
establishing an invisible hand for science that strongly motivates
scientists to share their results. The foundation for this reputation
economy is a set of very strong social norms: scientists must credit other
people’s work; they cannot plagiarize; and scientists judge other
scientists’ work by their record of publishpapers. But these norms focus
on just one way of sharing scientific knowledge: the scientific paper. If
we could establish similar norms and a reputation economy that
encourages broader sharing of scientific knowledge, then the invisible
hand of science would become stronger, and the process of science
would be greatly accelerated.

How can we expand science’s reputation economy in this way? Let’s
look at an example where such an expansion is beginning to happen
today. It’s a story that involves both the arXiv—the service we saw
earlier that makes the latest results of physics available for free
download—and another service for physicists called SPIRES. The arXiv
and SPIRES are together creating incentives for physicists to share
knowledge in new ways. To explain what’s going on, I first need to
explain what SPIRES does. Suppose that, for some reason, you’re very
interested in finding out what impact Stephen Hawking’s latest arXiv
preprint is having on other scientists” work. SPIRES can help by telling



you which arXiv preprints and published journal papers are citing
Hawking’s preprint. SPIRES might tell you, for example, that not a
single preprint or paper has yet cited Hawking’s latest. Or maybe you’ll
find that 1t’s spurred many other physicists to work on related ideas.
SPIRES can also give you the big picture of how often Hawking’s (or
any other physicist’s) preprints and papers have been cited in aggregate,
and who is citing them. This makes SPIRES a tremendously useful tool
for evaluating candidates for scientific jobs. When physics hiring
committees meet to evaluate candidates in the areas that SPIRES covers
(particle physics and some related areas), it’s not unusual for everyone in
the meeting to have their laptops out, comparing SPIRES citation
records.

What’s all this got to do with openness and new incentives to share
knowledge? Well, a couple of decades ago, preprints were viewed by
most physicists as mere stepping-stones along the road to conventional
journal publication. They weren’t valued as ends in themselves. To build
your career, you needed a record of high-quality journal papers. Today,
because of the arXiv and SPIRES, preprints have some status as ends in
themselves. It’s not uncommon for physicists to, for example, list
preprints that have not yet been published in a journal on their
curriculum vitae. And if a physicist discovers someone else working on a
project that competes with one of their own projects, they may rush to
get their preprint out first. Preprints don’t yet have as high a status as
journal articles, but a preprint with hundreds of SPIRES citations can
still carry quite a punch, career-wise. By providing a way of
demonstrating the scientific value and impact of a preprint, SPIRES and
the arXiv have created a real incentive for physicists to produce
preprints, an incentive that’s separate from the usual incentive to write
papers.

I’ve got to admit that as cultural changes go, this one’s pretty small.
The move to a preprint culture in physics does speed up the sharing of
scientific knowledge, and makes that knowledge more broadly
accessible. But it’s not nearly as big a change as replacing anagrams by
scientific journals! Still, we should pay attention to the story of the arXiv
and SPIRES, because it shows that it really is possible to create new
incentives for scientists to share knowledge. What’s more, this happened
without any compulsion by a central agency. Once SPIRES enabled the
impact of preprints to be measured, the new incentive emerged naturally
as individual physicists started using the SPIRES citation reports. In



science, as in so many parts of life, what gets measured is what gets
rewarded, and what gets rewarded is what gets done.

Could a similar strategy be used to incentivize scientists to share other
types of scientific knowledge? Let’s think, for example, about incentives
to share data. Suppose that, as has happened with preprints in physics,
scientists began to regularly cite other people’s data in their own
scientific papers. This is already starting to happen, and will happen
more as open data policies become more common. And suppose
someone sets up a citation tracking service that not only tracks citations
to papers and preprints, but also citations to data. If the service is good,
people will use it to assess other scientists. And they’ll start to see more
vividly the impact data sharing has. At this point, sharing data will start
to help rather than hurt scientists’ careers. Indeed, not only will scientists
have an incentive to share their data, it will be to their advantage to make
that data as useful as possible to other scientists. Scientists will begin to
see building the data web as an important part of their job, not as a
distraction from the serious business of writing papers.

This same kind of incentive building can be applied to any type of
scientific knowledge: preprints, data, computer code, science wikis,
collaboration markets, you name it. In each case the overall pattern is the
same: citation leads to measurement leads to reward leads to people who
are motivated to contribute. This is a way of expanding science’s
reputation economy. There will, in practice, be many complications, and
many possible variations on this theme. Indeed, even the arXiv-SPIRES
story I told was oversimplified: SPIRES was just one factor among
several that gave preprints real status in physics. But the basic picture is
clear.

A case of particular importance is computer code. Today, scientists
who write and release code often get little recognition for their work.
Someone who has created a terrific open source software program that’s
used by thousands of other scientists is likely to get little credit from
peers. “It’s just software” is the response many scientists have to such
work. From a career point of view, the author of the code would have
been better off spending their time writing a few minor papers that no
one reads. This is crazy: a lot of scientific knowledge is far better
expressed as code than in the form of a scientific paper. But today, that
knowledge often either remains hidden, or else is shoehorned into
papers, because there’s no incentive to do otherwise. But if we got a
citation-measurement-reward cycle going for code, then writing and
sharing code would start to help rather than hurt scientists’ careers. This



would have many positive consequences, but it would have one
particularly crucial consequence: it would give scientists a strong
motivation to create new tools for doing science. Scientists would be
rewarded for developing tools such as Galaxy Zoo, Foldit, the arXiv, and
so on. And if that happened we’d see scientists become leaders, not
laggards, in developing new tools for the construction of knowledge.

There are limits to the citation-measurement-reward idea. Obviously,
it’s neither possible nor desirable to judge a discovery based solely on
what citations a paper (or preprint or data or code) has received. When it
comes to assessing the importance of a discovery, there’s no replacement
for understanding the discovery deeply. But with that said, the basis for
the reputation economy in science ma citation system. It’s the way
scientists track the provenance of scientific knowledge. If scientists are
to take seriously contributions outside the old paper-based forms, then
we should extend the citation system, creating new tools and norms for
citation, while keeping in mind the limitations citations have (and have
always had) as a way of assessing scientific work.

Today, many scientists find the idea of working more openly almost
unimaginable. After giving talks about open science I’ve sometimes been
approached by skeptics who say, “Why would I help out my competitors
by sharing ideas and data on these new websites? Isn’t that just inviting
other people to steal my data, or to scoop me? Only someone naive could
think this will ever be widespread.” As things currently stand, there’s a
lot of truth to this point of view. But it’s also important to understand its
limits. What these skeptics forget is that they already freely share their
ideas and discoveries, whenever they publish papers describing their own
scientific work. They’re so stuck inside the citation-measurement-reward
system for papers that they view it as a natural law, and forget that it’s
socially constructed. It’s an agreement. And because it’s a social
agreement, that agreement can be changed. All that’s needed for open
science to succeed is for the sharing of scientific knowledge in new
media to carry the same kind of cachet that papers do today. At that point
the reputational reward of sharing knowledge in new ways will exceed
the benefits of keeping that knowledge hidden. Now, at this point
skeptics will sometimes say, “But no one will ever take ideas shared on a
blog [or wiki, etc.] seriously!” This may be true right now—although
even that i1s changing—but over the long run, the view is myopic and
ignores the lessons of the first open science revolution. We have a real
chance to drive the same kind of transition that Henry Oldenburg and his
colleagues caused in the seventeenth and eighteenth centuries,



incentivizing scientists to share their scientific knowledge using the most
powerful tools available today. We can bring the interests of individual
scientists back into alignment with the collective interest of the scientific
community and the public as a whole: driving science forward as fast as
possible.

Limits to Openness

What limits should be imposed on openness in science? Although it’s
broadly true that, as I said earler, information not on the network can’t do
any good, some limits are necessary. Some of these limits are obvious:
doctors can’t share patient records willy-nilly, security experts can’t
share information that compromises security, and so on. Of course, there
are already many measures in place to prevent disclosure of information
when it would violate expectations of privacy, ethics, safety, and legality.
But there are more subtle concerns about openness that also need to be
considered.

Might openness overwhelm scientists? One of the great
mathematicians of all time, Alexander Grothendieck, believes that it was
his capacity to be alone that was the wellspring of his creativity. In
autobiographical notes, he says that he found true creativity as a
consequence of being willing to “reach out in my own way to the things I
wished to learn, rather than relying on the notions of the consensus, overt
or tacit, coming from a more or less extended clan of which I found
myself a member.” Grothendieck is not alone in this belief. Ideas that
require careful nurturing may wither and die if they are modified
prematurely in response to others’ opinions. Perhaps if we move to a
more open, collaborative culture, we risk giving up the independence of
mind necessary for the highest forms of creativity. Will fewer people
attempt bold work that does not fit within the shared praxis of an existing
scientific community, but which instead aims to define a new praxis?

There’s a general problem here that goes beyond Grothendieck’s
desire for solitude, or romantic notions of lone geniuses redefining fields.
It’s the problem, which we discussed at the end of chapter 3, that
scientists only have limited time, and this imposes constraints on how
they work with others. Should they collaborate a little, a lot, or not at all?



If they choose to collaborate, with whom should they work? No matter
how much they enjoy collaboration, their attention doesn’t scale
infinitely, and so must be managed carefully. Sometimes the resolution
of the problem is, as for Grothendieck, to seek solitude. But for scientists
who choose to collaborate, the problem manifests in other ways. In the
Polymath Project, for example, a small number of contributions came
from people without the mathematical background to make significant
progress on the problem. Those people were outside the praxis shared by
most Polymath participants. Although their contributions were well
intentioned, they were of little help. Fortunately, there were few low-
quality contributions, and they were easily ignored. But if there had been
more, they would have significantly taxed the attention of other
Polymath participants. Similar problems can be caused by cranks, trolls,
and spammers, or even people who are just plain unpleasant.

These problems are serious but not insurmountable. A system can be
open without requiring that all participants receive equal attention. And
you can share your knowledge openly, without having to pay attention to
everyone (or, indeed, anyone) else. In general, for open collaborative
systems to work most effectively, participants must have powerful ways
of filtering information, so they can concentrate on the information of
most interest to them, and ignore the rest. In the MathWorks competition,
for example, recall how the score helps participants filter out unhelpful
ideas, and focus on the best ideas from other users. And if low-quality
contributions become more of a problem in the Polymath Project, it too
could be filtered. Ideally, science is open-but-strongly-filtered. This is a
natural consequence of the fact that while our attention doesn’t scale,
sharing knowledge does. In an open-but-filtered world there is no
problem with people such as Grothendieck pursuing their own solitary
program.

Won’t open science sometimes be used for ends that many
scientists find distasteful? In November of 2009, hackers broke into a
computer system in one of the world’s leading centers for climate
research, the Climate Research Unit at the University of East Anglia, in
the UK. The hackers downloaded more than 1,000 email messages sent
between climate scientists. They then leaked the emails (and many other
documents) to bloggers and journalists. The incident received worldwide
media attention, as many climate change skeptics seized upon the emails,
claiming that they contained evidence to prove that the notion of human-
caused climate change was a conspiracy among climate scientists. One
of the examples used to support this claim was an email from Kevin



Trenberth, a well-known climate scientist from the National Center for
Atmosphere Research in Boulder, Colorado. In his email, Trenberth says;
“The fact 1s that we can’t account for the lack of warming omputer
syment and it is a travesty that we can’t.” In fact, the sentence was being
quoted badly out of context. In the email, Trenberth was discussing a
paper he’d recently published, which was looking at the causes of the
year-to-year variation in the Earth’s surface temperature—why we have
hotter and colder years—and how that variation relates to the long-term
overall increase in temperature. The year-to-year variations are
presumably due to changes in the way surface heat is redistributed into
the ocean, into melting ice, and so on. Trenberth’s email and paper were
pointing out that we don’t fully understand all the processes causing
these variations, and so we can’t necessarily explain why any given year
is hotter or colder. Although the email expressed some frustration at this
state of affairs, it didn’t in any way contradict his belief in the long-run
rise in temperature, which swamps the short-term variations. Note that
the issue here is not about whether you agree with Trenberth about
climate change. The issue is that a careful and honest skeptic of climate
change could not possibly interpret Trenberth’s email as expressing any
doubt on his part that humans are causing climate change. Nevertheless,
many skeptics chose to quote the sentence out of context, either
maliciously, to further their own ends, or carelessly, from genuine
ignorance of the original intent.

This kind of incident illustrates a major risk facing climate scientists
who are considering working more openly. On the one hand, open
sharing of ideas and data has the potential to speed up discovery. On the
other hand, every piece of information shared by climate scientists, no
matter how innocent, stands a chance of being attacked by groups who
want to bring climate science into disrepute by exaggerating minor
problems, or by reporting remarks like Trenberth’s out of context. Given
this, how openly should work on climate science be done? This is not an
easy question to answer. If the issues were solely scientific, then the
climate scientists should move quickly to work more openly. But the
issues aren’t just scientific, they’re also political. I believe that the right
approach is not to make a dramatic shift, but rather to move gradually
toward a more open system, diagnosing and fixing problems as they
arise.

Might open science lead to the spread of misinformation? Over the
past two decades scientists have discovered more than 500 planets
orbiting around stars other than our sun. These discoveries are exciting,



but until recently, all the confirmed extrasolar planets were gas giants,
more like Jupiter or Neptune than they are like the Earth. Hoping to
change this situation, in early 2009 NASA launched the Kepler Mission,
a space-based observatory that astronomers believed could discover the
first Earth-size planets orbiting around other stars. NASA policy
ordinarily requires open release of data from such missions within a year,
and it was widely expected by scientists that the Kepler data would be
released in June of 2010. But in April of 2010 a NASA advisory panel
granted an unusual extension, allowing the Kepler team to withhold data
on the 400 best planet candidates until February of 2011. That gave them
more time to analyze the data, and a better shot at being the first to
discover Earth-size planets. In an article in the New York Times, the
Kepler team leader William Borucki is quoted as justifying the extension
as a way of guarding against false claims of discovery by other
astronomers, saying that “If we say, ‘Yes, they are small planets,” you
can be sure they are.” In February of 2011 the Kepler team announced
that they had, indeed, discovered five Earth-size planets.

Although practicing science in the open is, on balance, preferable,
Borucki isn’t totally wrong to be concerned about false claims. On July
8, 2010, the particle physicist and blogger Tommaso Dorigo used his
blog to report rumors that the long sought after Higgs particle had finally
been discovered. His post emphasized that he was just repeating
unconfirmed rumors, but despite this caveat the rumors on his blog were
picked up by the mainstream media, and led to articles in places such as
the Daily Telegraph (UK) and New Scientist magazine. Just nine days
later, on July 17, Dorigo used his blog to retract the rumor: it was a false
alarm. Some scientists criticized Dorigo, claiming that he acted
irresponsibly, or was just looking for notoriety. But scientific rumors are
a staple of scientific life, the kind of thing that scientists talk about over
lunch or in the hall. Indeed, it’s through this kind of speculative
discussion that new ideas are often born. And so it was a natural topic to
bring up in the informal environment of a blog, where Dorigo could talk
it over with his particle physicist friends and colleagues. Given this, it’s
tempting to instead criticize the mainstream media for irresponsible
reporting. But that’s also not fair. Dorigo is a professional physicist, well
known and well connected in the particle physics community, someone
who could be presumed to be in the know. Of course the mainstream
media picked up these rumors.

There’s a genuine tension here. Blogs are a powerful way to scale up
informal scientific conversation, and to explore speculative ideas. But



when this exploration is carried out in the open, there is a danger that the
mainstream media, eager for a scoop, will spread news of that
speculation, creating the impression that it is fact. Fortunately, this is a
problem of limited scope. The mainstream media aren’t interested in
most scientific discoveries, and for those few discoveries that are of
broad interest, events like the Dorigo-Higgs incident will help make the
media more cautious about reporting unconfirmed rumors. Although
people are often cynical about journalism, most major media
organizations are acutely aware of their reputation for credibility (or
otherwise), and embarrassed if they have to make frequent public
retractions. News of the Dorigo-Higgs retraction was carried by more
than half a dozen major media organizations, many of which pointed out
that the rumor was originally spread by the Telegraph and New Scientist.
That’s not the kind of publicity the Telegraph and New Scientist want.
With all that said, we will see this problem more and more in the future.
It seems a relatively small price for the benefits of open science.

Won’t increasing the scale of science make it harder to verify
scientific discoveries? As open science enables us to scale up the
process of discovery, the nature of scientific evidence will change, and
become more complex. In the case of some discoveries, understanding
the evidence in detail may be beyond the ability of any single person. An
early example of this occurred in 1983, when mathematicians announced
the solution of an important mathematical problem, known as the
classification of the finite simple groups. The proof took nearly 30 years
to complete, from 1955 to 1983, and involved 100 mathematicians
writing approximately 500 journal articles. Many minor gaps were
subsequently found in the proof, and at least one serious gap, which has
now been resolved (we hope!) by a two-volume, 1,200-page supplement
to the proof. In the 1980s, it was unusual for a scientific discovery to
have evidence of such complexity. Today it is becoming common. To
pick just serce of complexity, consider that modern experiments in many
scientific fields are increasingly likely to use hundreds of thousands or
even millions of lines of computer code. It’s nearly impossible to
eliminate all the bugs from such code. How can we be sure the results
output by that code are valid? How can other scientists verify and
reproduce the results from such experiments? Furthermore, the situation
1s getting more challenging, as our computational systems become more
complex. Single software programs are increasingly being replaced by
software ecologies, complex networks of interacting programs,
sometimes maintained by many people across many locations. How can



we guarantee that such software ecologies will produce reliable and
reproducible results? These and other similar concerns affect discoveries
ranging from particle physics to climate science, biology to astronomy.
It’s a kind of science beyond individual understanding. As this new scale
of evidence becomes the norm, our standards of evidence will need to
evolve. I’'m optimistic, though, that we’ll rise to the challenge, using our
amplified collective intelligence not only to make new discoveries, but
also to develop improved methods for testing and validating those
discoveries.

Practical Steps toward Open Science

What practical steps can we take toward open science? Worldwide,
our governments spend more than 100 billion dollars each year on basic
research. That’s our money, and we should demand a change to a more
open scientific culture. I believe that publicly funded science should be
open science. Let’s look at some practical steps that everyone, from
working scientists to members of the general public, can take toward this
end.

What can you do if you’re a scientist? Try out open science! Upload
some of your old data and old code, online. Document it, encourage
other people to use it, and make sure you tell them how you’d like to be
cited. Try out blogging. Push your comfort zone—try using your blog to
develop some of those ideas you’ve had in the back of your head for
years, but never quite got around to pursuing. You’ve little to lose, and
working in the open may breathe new life into your ideas. If that’s too
much time commitment, try making a few small contributions to others’
open science projects—say, making a comment on a science blog, or a
contribution to a wiki. Those contributions may be small, but your
scientific colleagues will notice, and it will help legitimize the new tools
in the scientific community. And you may find it more rewarding than
you think. If you’re adventurous, try pushing the boundaries. Ask
yourself if you can pioneer a new way of doing science, as the Polymath
Project, Foldit, and Galaxy Zoo have done. What can you conjure with
imagination and determination? Even if your ventures in open science
aren’t successful, think of your efforts as service to your community.



And, of course, you don’t need to do all your science in the open, or even
more than a small fraction.

Above all, be generous in giving other scientists credit when they
share their scientific knowledge in new ways. Find ways to cite the ideas
and data and code they share online. Encourage them to promote their
open work, to highlight it on their curriculum vitae and on their grant
applications, and to find ways of demonstrating its impact. This is the
way to get new citation-measurement-reward cycles going. Of course,
you will at times encounter colleagues with old-fashioned scientific
values, people who are dismissive of new ways of sharing ge, and who
think that the only measure of success for scientists is how many papers
they’ve published in high-profile journals such as Nature. Talk with
those people about the value of new ways of sharing knowledge, and of
the courage it takes for scientists, especially young scientists, to work in
the open. Sharing ideas and code and data openly, online, is every bit as
important as publishing papers, and it is only old-fashioned values that
say otherwise.

If you’re a scientist who is also a programmer, you have a special role
to play, an opportunity to build the new tools that redefine how science is
done. Be bold in experimenting with new ideas: this is the golden age of
scientific software. But also be bold in asserting the value of your work.
Today, your work is likely to be undervalued by old-fashioned
colleagues, not because of malice, but because of a Ilack of
understanding. Explain to other scientists how they should cite your
work. Work in cahoots with your scientist programmer friends to
establish shared norms for citation, and for sharing of code. And then
work together to gradually ratchet up the pressure on other scientists to
follow those norms. Don’t just promote your own work, but also insist
more broadly on the value of code as a scientific contribution in its own
right, every bit as valuable as more traditional forms.

What if you work at a grant agency? Talk to people in the scientific
communities you serve, and ask what knowledge is currently locked up
inside scientists’ heads and laboratories. What tools would be most
effective for sharing that knowledge? Is there an opportunity to develop
policies on open access, open data, and open code? How can we go
beyond today’s open access and open data policies? Can we use
examples such as the arXiv and SPIRES as models to help create new
norms for citation and new tools for measurement, and so expand
science’s reputation economy? More generally, if you’re involved in
government or in the policy-making process, then you can help by



getting involved, by lobbying for open access and open data, and more
generally by raising awareness of the issue of open science.

And what can you do if you are not a scientist, don’t work for a grant
agency, and don’t work in policy, but are a citizen with an interest in
science and human welfare? Talk with your friends and acquaintances
who are scientists. Ask them what they’re doing to make their data open.
Ask them what they do to share their ideas publicly and rapidly. Ask
them how they share their code. For open science to succeed, what’s
needed is a change in the values of the scientific community. If all
scientists believe wholeheartedly in the value of working in the open,
online, then change will come. This is fundamentally a problem of
changing hearts and minds. There is no stronger force for achieving such
a change than raising public awareness, so that everyone in our society
understands the tremendous value of open science, and understands that
achieving open science is one of the great challenges of our age. If every
scientist in the world is being asked by their friends and family what
they’re doing to make science more open, then change will come. If
every grant agent and every leader at our universities is being asked by
their friends and family what they’re doing to make science more open,
then change will come. And if pressure is put on our politicians by a
public demanding a more open scientific culture, then change will come.
This needs to become an issue of general concern to our society, a
political issue and a social issue that is understood by everyone to be of
critical importance. Yyou can an help achieve this by using your
personal power, your connections, and your imagination to lobby
politicians and grant agencies to make policies that encourage openness.
(P’ve listed some organizations already doing this in the “Selected
Sources and Suggestions for Further Reading” section at the end of this
book.) What types of knowledge will we, as a society, expect and
incentivize scientists to share with the world? Will we continue with our
current approach? Or will we choose to create a scientific culture that
embraces the open sharing of knowledge, the development of new tools
that extend our problem-solving ability and speed up scientific
discovery?

The steps I have just described are all small steps. But together they
will create an irreversible movement toward more open ways of doing
science. The inventor and scientist Daniel Hillis has observed that “there
are problems that are impossible if you think about them in two-year
terms—which everyone does—but they’re easy if you think in fifty-year
terms.” The problem of open science is a problem of this type. Today,



creating an open scientific culture seems to require an impossible change
in how scientists work. But by taking small steps we can gradually cause
a major cultural change.

The Era of Networked Science

I wrote this book with the goal of lighting an almighty fire under the
scientific community. We’re at a unique moment in history: for the first
time we have an open-ended ability to build powerful new tools for
thought. We have an opportunity to change the way knowledge is
constructed. But the scientific community, which ought to be in the
vanguard, is instead bringing up the rear, with most scientists clinging to
their existing way of working, and failing to support those who seek a
better way. As with the first open science revolution, as a society we
need to actively avert this tragedy of lost opportunity, by incentivizing
and, when appropriate, compelling scientists to contribute in new ways. |
believe that with hard work and dedication, we have a good chance of
completely revolutionizing science.

When we look back at the second half of the seventeenth century, we
can see that one of the great changes of that time was the invention of
modern science. When the history of the late twentieth and early
twentyfirst centuries is written, we’ll see this as the time in history when
the world’s information was transformed from an inert, passive state, and
put into a unified system that brings that information alive. The world’s
information is waking up. And that change gives us the opportunity to
restructure the way scientists think and work, and so to extend
humanity’s problem-solving ability. We are reinventing discovery, and
the result will be a new era of networked science that speeds up
discovery, not in one small corner of science, but across all of science.
That reinvention will deepen our understanding of how the universe
works and help us address our most critical human problems.



Appendix: The Problem Solved by the Polymath
Project

The Polymath Project aimed to prove a mathematical result known as
the density Hales-Jewett (DHJ) theorem. Although the proof of DHJ is
complex, the basic statement can be understood by anyone. Take a look
at the following three-by-three grid:
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I’ve marked seven of the squares on the grid with a dot; as you can
see, it’s possible to draw a line through three of those dots. By contrast,
the configuration in the following picture is l/ine-free—you can’t draw a
line through any three of the dots:




If you play around a bit, you’ll discover that this configuration is the
largest possible line-free configuration. In particular, if you mark seven
dots on the grid, then no matter how you place the dots, it is always
possible to draw a line through three of the dots, somewhere on the grid.

Imagine now that we extend the grid to three dimensions, i.e., a three-
by-three-by-three grid. It turns out that in three dimensions the largest
possible line-free configuration has 16 locations filled in. If we fill in 17
locations on the grid, then no matter which locations we fill in, it will be
possible to draw a line through three dots somewhere on the grid. You
can take my word for this, or, if you prefer, with a bit of work and three-
dimensional imagination, you can convince yourself that this is the case.

Let’s make a leap now, and imagine extending the grid from three
dimensions to an arbitrary number of spatial dimensions. We’ll give the
number of dimensions a label—we’ll call it n. This extension is hard to
visualize, hard enough that most mathematicians can’t do it, and they
instead translate the problem into an algebraic form. I won’t do the
algebraic translation here, but instead I'll just explain the question we’re
concerned with: what’s the size of the largest line-free configuration on a
grid in » dimensions? We’ll give that size a name, calling it s,. Our

discussion above indicates that s, = 6 and s; = 16, the sizes of the largest

line-free configurations in two and three dimensions. In higher
dimensions it rapidly gets extremely difficult to figure out the value of
s,. Mathematicians have worked out the value of s, and s3, as we’ve
seen, and also, with more effort, s, 55, and s¢, but no one in the world
knows what the exact value 1s for s;. And the situation gets even more

complicated in still higher dimensions. But even though it is difficult to
figure out an exact value for s,, the DHJ theorem gives us some partial

information about how large s, 1s.

In particular, one consequence of the DHJ theorem is that as the
number of dimensions n gets very large, the size s, of the largest line-

free configuration is only a tiny fraction of the total number of locations
on the grid. Put another way, as n gets large, filling in even a tiny
fraction of the grid forces a line somewhere. It doesn’t matter how clever
you are in filling in locations, there will be a line somewhere. To put the
statement in slightly more formal terms, the DHJ theorem tells us that

the fraction of the grid s,/3" occupied by the largest line-free



configuration gets vanishingly small as n becomes large—it goes to zero
in the limit of large n, to use the mathematical lingo.

This is an astonishing statement. As we’ve seen, in two and three
dimensions we can fill in most of the grid before we’re forced to put
three pieces in a line. Yet in high dimensions, DHJ tells us that a line is
forced somewhere on the grid, even if only a tiny fraction of the grid is
filled in. It’s not at all obvious that this should be the case, and yet the
DHJ theorem tells us that it’s true.

I’ve been describing consequences of the DHJ theorem, in order to
give you the flavor of what DHJ says. In fact, the full statement of the
DHJ theorem is stronger than the consequences I’ve described so far. It
doesn’t just work for three-by-three-by . . . grids, an analogous statement
is true for m-by-m-by . . . grids, where m is any number at all.
Furthermore, DHJ even tells us that the line will be a certain special type
of line called a combinatorial line. I won’t define combinatorial lines
here—see the references in the endnotes if you’d like an explanation of
what a combinatorial line is. For now, it’s enough that they’re a special
type of line. What the full statement of the DHJ theorem says is that as
the number of dimensions n gets large, the fraction of the m % m
x ... grid occupied by the largest subset without a combinatorial line
goes to zero. Put another way, as n gets large, filling in even a tiny
fraction of the grid will force a combinatorial line somewhere.

Why should you care about DHJ? If you’re coming to DHJ without a
lot of mathematical background knowledge, it perhaps seems like an
obscure problem. DHJ seems like the kind of puzzle that might make a
potentially fun (if difficult) diversion, if you have a puzzle-solving mind.
But why is the DHJ theorem any more important than solving a Sudoku
puzzle?

Appearances are deceiving. DHJ is a deep theorem. It turns out to
have as a consequence many other important and hard-to-prove results of
mathematics, some in areas that appear quite unrelated. Think of it as a
domino: when it falls, it causes many other important and otherwise
hard-to-budge mathematical dominoes to also fall. Let me give you an
example of the way DHJ connects to another part of mathematics that
seems unrelated—the problem of understanding the structure of the
prime numbers. It turns out that DHJ implies a deep result of number
theory called Szemerédi’s theorem. That theorem was first proved in
1975 by the mathematician Endre Szemerédi; mathematicians have since
found several additional proofs. Using ideas drawn from several of those
proofs, in 2004 the mathematicians Ben Green and Terence Tao proved a



major new result about the structure of the prime numbers. To
understand what the Green-Tao theorem says, consider the sequence of
numbers 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089. These
are all prime numbers, and they’re evenly spaced; each member of the
sequence is 210 larger than the one that precedes it. What the Green-Tao
theorem says is that you can find evenly spaced sequences of prime
numbers of any length whatsoever. Want an evenly spaced sequence of a
million prime numbers? Green-Tao guarantees that such a sequence
exists. The theorem doesn’t actually give an easily usable recipe for
finding such a sequence, but it guarantees that if you search for a
sequence long enough, you’ll find it eventually. Now, results about the
prime numbers probably seem quite unrelated to worrying about line-
free configurations in high dimension. And yet the DHJ-Szemerédi and
Szemerédi—Green-Tao connections suggest that there really i1s a
connection between DHJ and the structure of the prime numbers.

The DHJ theorem was first proved in 1991 by the mathematicians
Hillel Furstenberg and Yitzhak Katznelson. So when Tim Gowers
proposed the Polymath Project, he wasn’t proposing that the polymaths
find the first proof of DHJ. Rather, he was proposing that they find a new
proof. You may be surprised that a top mathematician such as Gowers
would be interested in finding a new proof of an already known result.
But the existing proof of DHJ used indirect and rather advanced
techniques from a branch of mathematics called ergodic theory. While it
was a perfectly good proof, Gowers believed that additional insight into
DHJ could be gained by finding a new proof that relied on different
techniques. In particular, Gowers was interested in finding a proof that
relied only on elementary techniques, that is, techniques that didn’t
require sophisticated mathematics such as the tools of ergodic theory.
Sometimes, finding new proofs can give us significant new insights that
help us understand why a result is true in the first place. Indeed, this is
exactly what happened with the multiple proofs of Szemerédi’s theorem.
When Green and Tao proved their theorem about prime numbers, they
drew on ideas from several different proofs of Szemerédi’s theorem.
That made finding a new proof of the DHJ theorem using only
elementary techniques a challenging and worthwhile goal for the
Polymath Project.
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Selected Sources and Suggestions for Further
Reading

This book is in considerable part a work of synthesis, and it owes a
tremendous debt to the work of others. Detailed notes on my sources can
be found beginning on page 221. Here, I describe a few of the sources
that have most decisively influenced my thinking, and suggest further
reading.

Collective intelligence: The idea of using computers to amplify
individual and collective human intelligence has a long history.
Influential early works include Vannevar Bush’s celebrated article “As
We May Think” [31], which described his imagined memex system, and
inspired the seminal work of both Douglas Engelbart [63] and Ted
Nelson [145]. Although these works are many decades old, they lay out
much of what we see in today’s internet, and reveal vistas beyond. Aside
from these foundational works, my ideas about collective intelligence
have been strongly influenced by economic ideas. Herbert Simon [197]
seems to have been the first person to have pointed out the crucial role of
attention as a scarce resource in an information-rich world. I also greatly
enjoyed Michael Goldhaber’s provocative article [75] on “The Attention
Economy and the Net.” Complementing this is the work of complexity
theorist Scott Page demonstrating the value of cognitive diversity in
group problem solving [168], and Hayek’s notion of “hidden knowledge”
and the use of prices as signls to aggregate that knowledge [93]. Other
influential works on related subjects include Hutchins’s detailed
anthropological analysis of collective intelligence in the navigation of a
ship [95], Lévy’s book on collective intelligence [124], and the
stimulating collection of essays on collective intelligence recently
assembled by Mark Tovey [224]. Writing from a very different point of



view, David Easley and Jon Kleinberg have written a great textbook,
Networks, Crowds, and Markets [59], which summarizes much of the
mathematical and quantitative research on networks. Finally, I
recommend Nicholas Carr’s book The Shallows [35]. It asks the
fundamental question, how are online tools changing the way we
(individually) think? I believe Carr’s answer is incomplete, but it’s a
stimulating exploration of this important question.

Open source: The best way to get informed about open source is to
participate in some open source projects. You can also learn a great deal
by reading over the code and discussion archives from open source
projects such as Linux and Wikipedia. While writing this book I spent
many happy hours doing just that, and can tell you that not only is it
informative, it’s often surprisingly fun, a kind of cheap entertainment for
geeks. 1 also recommend taking a good look at GitHub
(http://github.com), which is the most important current locus for open
source work. A good overview of open source is Steven Weber’s The
Success of Open Source [235]. Its only drawback is that it’s becoming a
little dated (2004), but there is much in the book that is relatively
timeless. Going even further back, there is Eric Raymond’s famous essay
“The Cathedral and the Bazaar” [178]. Raymond’s essay is what first got
me (and many others) interested in open source, and it remains well
worth reading. Yochai Benkler’s insightful “Coase’s Penguin, or, Linux
and The Nature of the Firm” [12] and The Wealth of Networks [13] have
strongly influenced much thinking about open source, especially in the
academic community. Finally, I recommend Ned Gulley and Karim
Lakhani’s fascinating account [87] of the Mathworks programming
competition.

Limits to collective intelligence: Informative summaries are Cass
Sunstein’s Infotopia [212] and James Surowiecki’s The Wisdom of
Crowds [214]. Classic texts include Charles Mackay’s Extraordinary
Popular Delusions and the Madness of Crowds, first published in 1841,
and since reprinted many times [130], and Irving Lester Janis’s
Groupthink [99]. Of course, a considerable fraction of our written culture
deals, directly or indirectly, with the challenges of group problem
solving. Among the more formative accounts for me were Ben Rich’s
Skunk Works [184], Richard Rhodes’s The Making of the Atomic Bomb
[183], and Robert Colwell’s The Pentium Chronicles [45]. A little further
afield, Peter Block’s book Community: The structure of belonging [18]
contains many insights about the problems of building community. And,
finally, Jane Jacobs’s masterpiece The Death and Life of Great American
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Cities [98] 1s a superb account of how very large groups tackle a core
human problem: how to make a place to live.

Networked science, in general: The potential of computers and the
network to change the way science is done has been discussed by many
people, and over a long period of time. Such discussion can be found in
many of the works describd above, in particular the work of Vannevar
Bush [31] and Douglas Engelbart [63]. Other notable works include
those of Eric Drexler [57], Jon Udell [227], Christine Borgman [23], and
Jim Gray [83]. See also Tim Berners-Lee’s original proposal for the
world wide web, reprinted in [14]. A stimulating and enjoyable fictional
depiction of networked science is Vernor Vinge’s Rainbows End [231].

Data-driven science: One of the first people to understand and clearly
articulate the value of data-driven science was Jim Gray, of Microsoft
Research. Many of his ideas are summarized in the essay [83], which I
also mentioned above. That essay is part of a stimulating book of essays
entitled The Fourth Paradigm [94]. The book is freely downloadable
from the web, and gives a good overview of many parts of data-driven
science. Another thought-provoking article is “The Unreasonable
Effectiveness of Data” [88], by Alon Halevy, Peter Norvig, and Fernando
Pereira. All three of the authors work for Google, which has perhaps the
most data-driven culture of any organization in the world, and the article
conveys well the radical shift in perspective that comes from thinking in
a data-driven way. If you have a background in programming, I also
recommend Norvig’s terrific short essay [157] on how to write a (data-
driven, naturally!) spelling corrector in just 21 lines of code. There are
many, many texts and papers on topics related to data-driven
intelligence. (Note, though, that most don’t use the term.) A good
practical introduction 1s Toby Segaran’s Programming Collective
Intelligence [191].

The democratization of science and citizen science: The
democratization of science has analogs in the business world, in
phenomena such as user-generated innovation, and open innovation
models for business. See, for example, Eric von Hippel’s book
Democratizing Innovation [233], whose title inspired the title of chapter
7, and Henry Chesbrough’s Open Innovation [36]. The point of view
developed in chapter 7 also owes a great deal to Clay Shirky’s notion
that our society has a cognitive surplus [195, 194; see also 196] which
can be used in the service of new forms of collective action.

Open science: My analysis of open science is strongly influenced by
the work of Mancur Olson [161] on collective action, and by the work of




Elinor Ostrom [165] on the management of common pool resources such
as fisheries and forests. Both these works have many more implications
for open science than I have described. In particular, I only briefly
touched on many of the detailed principles that Ostrom identifies for the
management of common pool resources. Many of those principles can be
fruitfully applied or adapted to open science. I have also been stimulated
by the work of Robert Axelrod [9] on the conditions under which parties
will cooperate; the problem of large-scale cooperation is an example of a
collective action problem. On the early history of open science, I’ve been
stimulated by many sources, but especially by Paul David [49], Elizabeth
Eisenstein [61], and Mary Boas Hall [89].

One thing that pained me while writing this book is that narrative
constraints meant that I’ve had to omit nearly all the thousands of open
science projects now going on. Fortunately, there are many excellent
sources for keeping track of what’s going on in open science today. Let
me mention just a few. One of the most valuable is Peter Suber’s website
(http://www.earlham.edu/~peters/hometoc.htm), which is a tremendous
resource on all aspects of open science, but especially open access
publishing. Suber’s superb blog
(http://www.earlham.edu/~peters/fos/fosblog.html) is no longer updated,
but remains a valuable historical resource. And Suber’s ongoing Open
Access Newsletter
(http://www.earlham.edu/~peters/fos/newsletter/archive.htm) is essential.
Another excellent source on open science is the blog of Cameron Neylon
(http://cameronneylon.net/). Neylon is one of the pioneers of open
notebook science, and has many stimulating things to say about open
science more generally. You can also find many open scientists and open
science projects using services such as Twitter and FriendFeed. A good
entry into this world is to use Google to search for “Twitter open
science.”

In addition to these individuals, there are many organizations working
for open science. The Alliance for Taxpayer Access

policies on open access to scientific papers and scientific data. For
instance, it was in part through their lobbying that the NIH open access
policy described in chapter 7 came about. Other organizations working
toward open science include Science Commons
(http://sciencecommon.sorg), which is part of the Creative Commons
organization, and the Open Knowledge Foundation (http://okfn.org).



http://www.earlham.edu/~peters/hometoc.htm
http://www.earlham.edu/~peters/fos/fosblog.html
http://www.earlham.edu/~peters/fos/newsletter/archive.htm
http://cameronneylon.net/
http://www.taxpayeraccess.org/
http://sciencecommon.sorg/
http://okfn.org/

The challenge of creating a more open culture is not limited to
science. It’s also being confronted in general culture. People such as
Richard Stallman [202], Lawrence Lessig [122], and many others have
described the benefits openness brings in a networked world. They’ve
developed tools such as Creative Commons licensing
(http://creativecommons.org) and “copyleft” licenses to help bring about
a more open culture. My thinking has been especially strongly
influenced by Lessig [122]. However, although open science has many
parallels to the open culture movement, science faces a unique set of
forces that inhibit open sharing. That means that tools such as Creative
Commons licenses, which have been tremendously effective in moving
to a more open culture, don’t directly address the principal underlying
challenge in science: the fact that scientists are rewarded for publishing
papers, and not for other ways of sharing knowledge. So although open
science can learn a lot from the open culture movement, it also requires
new thinking.
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Notes

Some of the references that follow include webpages whose URLs may
expire after this book is published. Such webpages should be recoverable using
the Internet Archive’s Wayback Machine
(http://www.archive.org/web/web.php). Online sources are often written
informally, and I’ve reproduced spelling and other errors verbatim when
quoting such sources.

Chapter 1. Reinventing Discovery

p_1: Gowers proposed the Polymath Project in a posting to his blog [79]. For
more on the Polymath Project, see [82].

p_2: Gowers’s announcement of the probable success of the first Polymath
Project: [81].

p_2 The Polymath process was “to normal research as driving is to pushing
acar’: [78].

p_3: The term collective intelligence was introduced by the philosopher
Pierre Lévy [124]. A stimulating recent attempt to measure collective
intelligence and to relate it to qualities of participants in the group is [243].

p_3 the process of science will . . . change more in the next twenty years than
it has in the past 300 years: the author Kevin Kelly has made a similar claim in
[108] (see also [109]): “There will be more change in the next 50 years of
science than in the last 400 years.” There is some broad overlap in my
reasoning and Kelly’s, e.g., we both emphasize the importance of collaboration
and large-scale data collection. There are also some considerable differences in
our reasoning, e.g., Kelly emphasizes changes such as triple-blind experiments,
and more prizes in science, while I believe these will play a comparatively
minor role in change, and that the following three areas are the most critical:
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(1) collective intelligence and data-driven science, and the way they change
how science is done; (2) the changing relationship between science and
society; and (3) the challenge of achieving a much more open scientific culture.

p_4: GenBank is at http://www.ncbi.nlm.nih.gov/genbank/. The human
genome is available at
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/index.shtml,

p_7Z: A firsthand account of the Bermuda meeting, including a statement of
the Bermuda Agreement, may be found in [211]. The Clinton-Blair statement
on sharing of genetic data doesn’t explicitly name the Bermuda Agreement, but
the principles espoused are essentially the principles agreed on in Bermuda.
The statement may be found at [102].

p_7Z: I’ve used the Bermuda Agreement as an example of a collective
agreement that drives data sharing. In fact, the amount of genetic data
deposited in GenBank has doubled roughly once every 18 months since
GenBank was founded, and this trend was not noticeably hastened by the
Bermuda Agreement. You might wonder if the Bermuda Agreement was truly
all that important to increased data sharing. Of course, part of the increase in
data sharing is due to better sequencing technology. But the increase is also due
in part to a broad drive by the biological community to share data more freely.
The Bermuda Agreement is merely part of that broad drive, albeit perhaps the
most visi manifestation.

p_7: On extensions of the Bermuda Agreement, see especially the Fort
Lauderdale Agreement [237].

p_7: On the sharing of influenza data, see for example [20] and [60] on the
avian flu outbreak of 2006, and [32] on the swine flu pandemic of 2009—10.

p_10 We are living in the time of transition to the second era of science: A
related claim has been made by the database researcher Jim Gray [83] (see also
the volume in which Gray’s essay appears [94]). Gray has claimed that we are
today entering what he calls a “fourth paradigm” of scientific discovery, one
based around highly data-intensive science in which computers help us find
meaning in data. In Gray’s account this fourth paradigm is an extension of what
he calls the first paradigm (empirical observation), second paradigm (the
formation of models to explain observation), and third paradigm (the use of
simulation to understand complex phenomena) of science. It’s true that data-
intensive science is important, and we’ll discuss it in chapter 6. But Gray’s
conception of the current change in science is too narrow. Science is about
much more than just finding meaning in data. It’s also about the ways in which
scientists work together to construct knowledge, and how the scientific
community relates to society as a whole. Those aspects of science are also
being transformed by online tools. Furthermore, each of these shifts impacts on
and reinforces the others. So, for example, to really understand the impact of
data-intensive science we must understand changes in the ways scientists work
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together. Gray’s fourth paradigm is just part of the changes being wrought by
networked science.

Chapter 2. Online Tools Make Us Smarter

p_15: My account of Kasparov versus the World is based primarily on
Kasparov’s book (with Daniel King) [107], and Irina Krush’s account of the
game (with Kenneth Regan) [115].

p_15 “the greatest game in the history of chess”: from a Reuters interview
with Kasparov conducted during the game [186], at move number 37. It is part
of an interesting longer comment by Kasparov: “ ‘It is the greatest game in the
history of chess. The sheer number of ideas, the complexity, and the
contribution it has made to chess make it the most important game ever
played.”

p_19: James Surowiecki, The Wisdom of Crowds, [214].

2_20: Nicholas Carr’s book The Shallows [35] is an expanded version of an
earlier article, “Is Google Making Us Stupid?” [34]. Related arguments have
also been made by Jaron Lanier [117].

Chapter 3. Restructuring Expert Attention

p22: On ASSET India, InnoCentive, and Zacay Brown: [29, 222]. The text
on InnoCentive is a much expanded and adapted version of text from my
article [153].

p_23 Many of the successful solvers report, as Zacary Brown did, that the
Challenges they solve closely match their skills and interests: see [116] for
more on the characteristics of successful solvers. Note that this study also
found that people often solve Challenges that are nominally outside their
domain of expertise. A chemist might, for example, solve a problem in biology.
This seems like a contradiction to the claim about a close match to expertise,
but it is not: the key difficulty in solving the biological problem might be a
very specific piece of expertise from chemistry. So when one looks at the
Challenge solutions at a fine-grained level, the match to expertise is often
exceptionally close.

p_24 Its because Zacary Brown has such an enormous comparative
advantage that he and ASSET can work together for mutual benefit:



“comparative advantage” is a technical term from economics, and I’m using
the term in that sense. Elsewhere, when I speak of people applying their
expertise in the “best” possible way (or similar language), I mean best in the
sense of maximizing comparative advantage, not maximizing absolute
advantage.

p_24: The critical character of human attention as a scarce resource in an
information-rich world was pointed out in a prescient article by Herbert Simon
[197]. A striking speculative work on the economics of attention is the article
by Michael Goldhaber [75]. See also [151].

p_27: Regarding the term “designed serendipity,” Jon Udell used the term
“manufactured serendipity” to describe a similar concept in [228]. I’ve used
“designed serendipity” instead because it emphasizes the way serendipity can
be achieved as the result of deliberate design choices. The idea of designed
serendipity seems to have originated in the open source software movement,
and was succinctly captured in Eric Raymond’s [178] observation that when
debugging open source software, ‘“given enough eyeballs, all bugs are
shallow.” Raymond dubbed this observation Linus’s Law, after the creator of
Linux, Linus Torvalds. We can generalize Linus’s Law to other forms of
problem solving: “Given enough eyeballs, all problems are easy.” It’s not
literally true, but it does capture something of the essence of designed
serendipity.

27 “Grossmann, you must help me or else I'll go crazy!”: the Einstein-
Grossmann story is told in full in [169].

p_30: The discussion of conversational critical mass is inspired in part by
chapter 3 of [189].

30 Polymath participants often “found [themselves] having thoughts that
[they] would not have had without some chance remark of another
contributor”: [80].

p 31: On the value of cognitive diversity,eat, for example, the work of Scott
Page [168] and Friedrich von Hayek [93].

p_32: The phrase “architecture of attention” is inspired by Tim O’Reilly’s
elegant phrase “architecture of participation” [162]. O’Reilly uses his term “to
describe the nature of systems that are designed for user contribution.” We’re
interested in systems designed for creative problem solving, and in such
systems it is the allocation of expert attention that is most crucial.

p_34: The number of employees on Avatar is from [65].

p_36: The 1983 discovery of the Z boson is described in [4].

p_37 “who is in charge of the supply of bread to the population of
London?”: see Paul Seabright’s The Company of Strangers [190].

p_37 What makes prices useful is that . . . they aggregate an enormous
amount of hidden knowledge: [93].

p_38: The “dumb question” was posed by Polymath participant Ryan
O’Donnell: [159].



p_39: On the point that online tools are subsuming and extending both
conventional markets and conventional organizations: a related point has been
made by the theorist Yochai Benkler in his article “Coase’s Penguin, or, Linux
and The Nature of the Firm [12].” Benkler has a different focus, being
concerned not so much with the solution of creative problems as with the
production of goods. He proposes that online collaboration has enabled a third
form of production, beyond markets and conventional organizations, which he
calls “peer production.” I believe this is too narrow a point of view, both for
creative problem solving and for the production of goods. Online tools can be
used to subsume both markets and conventional organizations as special cases,
and also enable many new forms of production and creative problem solving.
Thus it’s not that we now have a third form of production. It’s that we now
have a means of production that includes all our former forms as special cases,
and enables new forms.

Chapter 4. Patterns of Online Collaboration

p_44. Insightful accounts of open source software development include [12,
13, 178, 235]. Even more useful are the innumerable open source projects
maintained online at sites such as GitHub (http://github.com) and SourceForge
(http://sourceforge.net).

p._44: My history of Linux is based largely on postings to the comp.os.minix,
alt.os.linux, and comp.os.linux newsgroups in 1991 and 1992. I found reading
through those forums surprisingly enjoyable, and even compelling: as you read,
you start to get a visceral sense of what was involved in producing a marvel of
modern software. My account of Linux was also broadly influenced by [235],
as well as many other sources for details (see below).

45 Shortly after Torvalds's post . . . : comp.0os.minix newsgroup posting,
January 13, 1992.

45 80 people were named as contributors in the Linux Credits file: See
[226] for the history of the Credits file. March 1994 is the first time such a file
was included in Linux.

435 By early 2008, the Linux kernel . . . : [114].

p_45: On the role of Linux in Hollywood animation and visual effects
companies, see [90] for an account as of 2002, the time when Linux was
coming into the industry, and beginning to dominate. [187] claims that as of
2008, Linux was used on “more than 95% of the servers and desktops at large
animation and visual effects companies.”

45 Open source software projects have two key attributes: Some open
source advocates prefer a more nuanced description of open source than the
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description I’ve given. Many complex and sometimes heated discussions have
gone on regarding which projects should be regarded as truly open source.
Indeed, a not-for-profit organization named the Open Source Initiative exists in
part to decide whether a project should be labeled open source, and if so, to
provide certification. From the outside this may look like pedantic nitpicking,
but there are good reasons for it. Open source is sometimes seen as a threat to
some large software companies: for instance, Linus Torvalds once said in the
New York Times, “I’'m not out to destroy Microsoft. That will just be a
completely unintentional side effect” [52]. Some of the companies threatened
by open source have struck back by trying to break the open source brand,
releasing products they call “open source,” but lacking crucial features found in
truly open source projects. In May 2001, Microsoft senior vice president Craig
Mundie [142] announced that Microsoft would be releasing some products as
“Shared Source,” stating that “Shared Source is Open Source.” A close look at
the Microsoft Shared Source licenses shows that they are heavily skewed
toward users of Microsoft products, and in some cases prevent programmers
from modifying code. This is certainly not open source! That type of incident
shows why open source advocates sometimes get upset when people use the
term “open source” in a sloppy way. We’ll take a more relaxed approach that I
believe gets at the essence of open source, but without getting bogged down in
the complexities of whether the projects we describe would pass all the
stringent tests demanded by some open source advocates.

p46: The figure of 4,300 lines of code added to the Linux kernel per day is
from an informative talk about the Linux kernel development process, by Greg
Kroah-Hartman [113].

.46 an experienced developer will typically write a f: for insousand lines of
code per year: this estimate is based on the COCOMO 11 software model [19].

146 SourceForge is home to more than 230,000 open source projects: [239].

P46 open source is a general design methodology that can be applied to any
project involving digital information: The open source methodology can also
be applied to nondigital information. You could imagine, for instance, using
architects’ printed plans as the basis for open source design of buildings. The
problem with analog information is that it tends to degrade as it is repeatedly
copied, which limits its usefulness for the open source methodology.

p_46 Open Architecture Network: http://www.openarchitecturenetwork.org.
The Open Architecture Network was introduced in a talk by Cameron Sinclair:
[198].

p48: On open source biology, see, for example, chapter 13 of [33].

249: My account of the near fork of Linux is based primarily on the online
Linux kernel mailing list, with some additional information from [235].

p_31: On the difficulty of making open source development modular, a
comment [’ve sometimes heard from non-programmers who are interested in
open source is that programming is “naturally modular.” This is a
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misconception, and seems to be based on a confusion in terminology. It’s true
that many programming languages encourage a modular structure in
development, and for small programs this makes modular design easy. But for
large-scale systems such as Linux modularity means something quite different,
and is much more difficult to achieve. Large-scale systems are no more
naturally modular than a painting is naturally modular because paint happens to
be built from modular units (molecules). Rather, modularity in large-scale
software engineering requires clever design through several levels of
abstraction, and that, in turns, requires a strong commitment to the principle of
modularity on the part of developers.

p.52: For Linus Torvalds on modularity, see [223].

yoi 53: The Million Penguins blog is at
http://www.amillionpenguins.com/blog/, and has links to other resources
associated with the Million Penguins project, including the wiki used to write
the novel. I learned of the project from [139], which ran the same excerpt from
the novel I have used.

p__55: Firefox’s online issue tracker may be found at
http://bugzilla.mozilla.org.

p__55: The favicon bug in Firefox is  described at
https://bugzilla.mozilla.org/show_bug.cgi?id=411966.

36 The issue tracker isn 't just for fixing bugs, its also used to propose and
implement new features: In fact, the issue tracker is just one of several ways in
which Firefox developers can propose new features. Other forums used to
propose new features include an online mailing list, a wiki, and even a weekly
conference phone call of Firefox developers.

38 more than a billion lines: This and the estimate of the rate of code
growth are conservative estimates, based on work by Deshpande and Riehle
[51], current as of the end of 2006.

p38: Alan Kay’s story about Donald Knuth is from page 101 of [192].

239 “Good programmers code; great programmers reuse other people’s
code’: Variants of this saying have floated around the open source world for
years, but I haven’t been able to track down the original source. This is fitting.
There’s more, too: the quote is a paraphrase of a quote often attributed to
Picasso, “Good artists copy; great artists steal.” I haven’t been able to find a
verifiable source for the Picasso quote, but compare T. S. Eliot’s “Immature
poets imitate; mature poets steal” [62].

159 For more on the MathWorks competition, see [87] and, especially, [88].

p61 “I started to become ‘obsessed’ ”: [86].

R63: A study by two scientists at the software company SAP, Oliver Arafat
and Dirk Riehle . . . :[3].

p_63: You might conclude from the discussion of microcontribution that
open source software is mostly built up out of tiny contributions. But just
because small contributions are more frequent doesn’t mean that they make up
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the bulk of the final product. It might be that a few large contributions
overwhelm the many smaller contributions. And, indeed, in many open source
projects that’s what happens: tiny changes are the most frequent, but the final
product is still dominated by relatively large chunks of code. It’s tempting,
then, to reverse direction, and conclude that small contributions aren’t that
important, that really they’re a distraction. But that’s wrong too, a bit like
arguing that Hamlet would be a better play with everything removed except the
great soliloquies. Both the large and the small contributions are crucial. The
large contributions matter for the obvious reason, and the small contributions
matter because they move the conversation forward, and help the collaboration
explore a broader range of ideas. It’s from the best of those ideas that the big
contributions spring.

p_66 a collaboration needs to know what , aration knows: This observation,
often in different guises, seems to have been made many times. I first fully
appreciated it after reading [28].

p67 “If anything in my life that I've participated in . . .”: This quote is from
a comment made by commenter AdmiralBumblebee [30] on the website reddit.
It’s worth mentioning that the comment was stimulated by an early version of
the material that opens chapter 2 of this book, which AdmiralBumblebee felt
reflected “commercial hype” and a sponsor’s view of the game. My account is,
however, not based on information from the sponsor, Microsoft, but primarily
on the firsthand accounts of Kasparov and Krush, and corroborated by several
other sources.

Chapter 5. The Limits and the Potential of Collective Intelligence

p_69: The Stasser-Titus experiments are described in [204], which contains
many more details than my abbreviated account. A review of work following
up these experiments is [203]. An informative broader summary of the way
collective intelligence can fail is Sunstein’s book Infotopia [212].

73 the stronger players on the World Team could usually agree on which
analyses were best. There was a significant exception to this, which is that
early in the game Microsoft asked the World Team advisors not to consult with
one another, and so they did not have the opportunity to come to agreement.
But many of the stronger World Team players were in close contact, and they
were frequently able to come to agreement.

p_78: On the limits to collective intelligence, and problems such as
groupthink, information cascades, etc., see [99, 212, 213, 214], and references
therein.



p_79: Regarding the rapid acceptance of Einstein’s ideas, it helped that
leading scientists such as Lorentz and Poincaré arrived at similar conclusions at
about the same time. But although Einstein’s formulation of relativity was even
more radical than the formulations of Lorentz and Poincaré, it quickly became
accepted as the correct way to think about relativity.

p_79: On the discovery of DNA, and Pauling’s error, see Watson’s memoir,
The Double Helix [234].

280 “If Feynman says it three times, its right”: [72].

p_84: My thanks to Mark Tovey for help constructing this example on
optical illusions and cognitive science.

p.835: On collaboration markets, see also [246] and [146].

p_835: The discussion of topological quantum computes is inspired by [22].
Topological quantum computers were originally proposed in a remarkable
article by Kitaev [111].

Chapter 6. All the World’s Knowledge

p_91: Swanson’s discovery of the magnesium-migraine connection is
described in [215], and reviewed in [216].

p_92: An interesting question about the migraine-magnesium connection is
why it wasn’t discovered by, say, scientists working on epilepsy, some of
whom were presumably aware of the connection of epilepsy to both migraines
and magnesium deficiency. Speculating, it seems likely that the reason this
connection went unnoticed is that (1) those scientists were focused mostly on
understanding epilepsy, not other conditions; and (2) a single connection
linking migraines and magnesium deficiency isn’t enough of a pattern to infer
anything. Epilepsy is connected to many different conditions, most of which
have no direct relation to one another.

p_92: On Swanson’s procedure, there is, of course, nothing new about
inferring undiscovered knowledge from existing scientific knowledge. It’s
standard practice in fields like my own field of theoretical physics. But
Swanson’s systematic computer-mediated application of this idea in medicine
was new, and foreshadowed an explosion in the use of similar data mining
techniques in many areas of science.

p 93 The notion of the extended mind has been discussed in [43].

193 The paper describing the use of Google search queries to track the flu
is [71].

p_93: Influenza annual mortality rates are from the World Health
Organization [244].

p 93: The Spanish flu mortality rate is from [219].



p 94: The Google Flu Trends website is http://www.google.org/flutrends.

p 94: The CDC/General Electric system for tracking influenza is described
in [136].

p_94: The follow-up study showing that Google Flu Trends is better at
tracking influenza-like illnesses than it is at tracking laboratory-confirmed
cases of influenza is [163].

p.94: On the use of search queries to predict unemployment, see [6]. On the
use of search queries to predict housing prices, see [245]. On the use of search
queries to help improve predictions for how well songs will do on the charts,
see [73]. For a broad range of applications, see [42]. A study using Twitter to
predict movie box-office revenue is [7]. Finall see [11] for a thought-provoking
discussion of Google as a “database of [human] intention.”

p.95: For Eric Schmidt on privacy, see [64].

p_96: The phrase “unknown knowns” was suggested in this context by Jen
Dodd and Hassan Masum, inspired by former US Secretary of Defense Donald
Rumsfeld’s famous use [188] of “unknown unknowns.”

p 97: The discovery of the Sloan Great Wall of galaxies is described in [77].
The Sloan Great Wall galaxies don’t appear to be gravitationally bound
together, and so some astrophysicists don’t regard them as a single structure.
However, much of the story told in this section carries over to several other
large-scale features of the universe—my choice of the Sloan Great Wall was
somewhat arbitrary.

p_100: The discovery of the many dwarf galaxies near to the Milky Way was
described n multiple papers. For an overview, see
http://www.sdss.org/signature.html.

p_100: The discovery of the orbiting black holes was described in [25]. In
the text I state that Boroson and Lauer searched through galaxy images from
the SDSS. To be a bit more precise, they searched through a selection of
17,500 quasars, a special type of galaxy known to contain supermassive black
holes. For more on what quasars are and why they’re interesting, see the
description on page 130. Note that there has been considerable follow-up
discussion in the astronomy and astrophysics community of whether the
discovery in [25] is, in fact, of a pair of orbiting black holes, or perhaps
something else. This conversation is ongoing.

p_101: The Sloan Digital Sky Survey was described in [247]. The citation
numbers for this paper are from the service Google Scholar. The numbers are
conservative, since they do not include citations to subsequent data releases,
and many other key papers from the SDSS.

p_102: The SDSS has codified many of their policies about collaboration and
data sharing at http://www.sdss.org/collaboration/. It makes surprisingly
stimulating reading.

p_102: The SDSS SkyServer is at http://skyserver.sdss.org.
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p_104: On Watson, Crick and Franklin, see Watson’s memoir, The Double
Helix [234].

p_105: The webpage for stage 111 of the SDSS is at http://www.sdss3.org.

p_105: My account of the Ocean Observatories Initiative is based on the
project website, at http://www.oceanleadership.org/programs-and-
partnerships/ocean-observing/ooi/, and [50)].

p_106: Mapping the brain is far too large a subject for me to give a
comprehensive list of references. An overview of work on the Allen Brain
Atlas may be found in Jonah Lehrer’s excellent article [120]. Most of the facts
I relate are from that article. The paper announcing the atlas of gene expression
in the mouse brain is [121]. Overviews of some of the progress and challenges
in mapping the human connectome may be found in [119] and [125].

p_108: Bioinformatics and cheminformatics are now well-established fields,
with a significant literature, and I won’t attempt to single out any particular
reference for special mention. Astroinformatics has emerged more recently. See
especially [24] for a manifesto on the need for astroinformatics.

p_113: A report on the 2005 Playchess.com freestyle chess tournament may
be found at [37], with follow-up commentary on the winners at [39]. Garry
Kasparov’s comments on the result are in the fascinating article [106], which
contains much of interest on the subject of computers and chess. Additional
commentary on Hydra’s involvement may be found at [38]. Interestingly,
Hydra has played and lost twice in games of correspondence chess, against
correspondence chess grandmaster Arno Nickel. Nickel was, however, allowed
to use computer chess programs in these games. A full record of Hydra’s
games may be found at [40].

p_119: Chuck Hansen’s book is [92]. The story I recount about Hansen’s
methodology is told in Richard Rhodes’s book How to Write, [182], page 61.

p__ 120 On the semantic web, see [16, 15] and
http://www.w3.org/standards/semanticweb/. A stimulating alternate point of
view is [88].

p_120: For Obama’s memorandum on transparency and open government,
see [158].

p_123: The beautiful summary of Einstein’s general theory of relativity,
“Spacetime tells matter how to move; matter tells spacetime how to curve,” is
due to John Wheeler [240].

p_125 these models have no understanding of the meaning of “hola” or
“hello”: 1 use the term “understanding” here in its everyday sense. I suspect,
though, that one day we’ll discover that what we mean by “understanding” is
captured in part (but only in part) by the kind of statistical association in these
models.

125 no one on the Google Translate team spoke Chinese or Arabic: [69].

p_128: Planck’s comment “I really did not give it [the quantum theory] much
thought” is from Helge Kragh’s article [112].
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Chapter 7. Democratizing Science

p_129: My account of Galaxy Zoo is based on the Galaxy Zoo blog,
http://blogs.zooniverse.org/galaxyzoo/, the Galaxy 700 forum,
http://www.galaxyzooforum.org, and an article by Chris Lintott and Kate Land
[127]. The material on Hanny’s Voorwerp draws also on Hanny van Arkel’s
blog http://www.hannysvoorwerp.com/, and the original discussion thread
started by Hanny van Arkel [67]. The first Galaxy Zoo paper on the voorwerp
is [128].

p_131: The alternative explanation of the voorwerp is given in [105, 177].
Some comments on the alternative explanation by Galaxy Zoo cofounder and
Zookeeper Chris Lintott may be found at [126].

p_135: Alice Sheppard’s account of the discovery of the green pea galaxies is
in [193]. Note that the galaxy images seen by the Zooites are in false color, and
the “green peas” are actually closer to red.

p_138: An enjoyable short article on the discovery of helium is [118].

p_141: Bob Nichol’s quote, “I can ask the question ‘how many galaxies have
a bar through the middle of them’ and typically I would embark on a career-
long quest to answer this fundamental question . . . ,” is from [149].

p_143: Foldit is at http://fold.it. Good overviews of Foldit are [46, 21].

p_147: For Aotearoa on Foldit, see [1] and [2].

p_148: The Foldit results for the 2008 CASP are at [174].

p_149: On John Caister Bennett’s discovery of the great comet of 1968, see
[104].

p_149: Comet hunter Rainer Kracht’s homepage, at http://www.rkracht.de/,
has a list of comets he has discovered. Background on SOHO’s success at
hunting comets may be found at http://sungrazer.nrl.navy.mil/.

p_150: The eBird website is at http://ebird.org, and the project is described in
[210]. The information on the number of contributions and contributors is from
http://www.avianknowledge.net/content/datasets and [209].

p_150: The open dinosaur project is at http://opendino.wordpress.com/. An
overview of the project can be found in [220].

p_151: The use of Galaxy Zoo data to train a computer algorithm is
described in [10].

p_153: Clay Shirky’s analysis of Wikipedia appeared in [195]. That article is
also the origin of the phrase “cognitive surplus.” Shirky has developed these
ideas at book length in [194].

p_153 On average Americans watch five hours of television per day: [156].

p_154: Clay Shirky’s idea of doing “big things for love” is developed at
length in his insightful book Here Comes Everybody [196]. The quote “We are
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used to a world where little things happen for love and big things happen for
money . ..” is from page 104 of that book.

135 “my life changed forever . . .”:[132].

p_155: The 1988 data on polio incidence are from [141].

p_155: Data on 2003 polio incidence are from the Global Polio Eradication
Initiative’s 2003 annual report, available at http://polioeradication.org.

p_155: The Nigerian boycott of the polio vaccination program is described in
[101].

p_156: A review of the literature on the connection between vaccines and
autism is [68]. The evidence in this review strongly suggests that there is no
causal link.

p_156: The numbers on vaccination rates for measles-mumps-rubella and the
rate of measles infection are from [135], based on data from the Health
Protection Agency.

p_160: The single best resource on open access is Peter Suber’s remarkable
blog, Open Access News, available at
http://www.earlham.edu/~peters/fos/fosblog.html. The blog was discontinued
as of April 2010, but it is well worth browsing through the archives. Suber has
prepared an overview of Open Access [207], and a timeline [208], both of
which are very helpful for getting a big picture view of open access. Suber and
others continue with the Open Access Tracking Project, whose archives may be
found at http://oatp.tumblr.com/. For a book-length overview of open access,
see [241].

p_161: The arXiv is online at http:/www.arxiv.org. Note that the arXiv
started in the field of physics, but has since spread to other disciplines, such as
mathematics and computer science. In this book I’ve concentrated on the
physics aspects and sometimes refer to it as the physics arXiv, since physics is
the field in which the arXiv is most dominant.

p_162: The Public Library of Science (PLoS) website is at http://plos.org.
PLoS wasn’t the first open access journal, but it was one of the earliest, and
I’ve focused on it because it has blazed trails in many ways.

p_162: For an overview of the NIH Public Access Policy, see [206]. It’s
short, but contains many informative links.

) 162: The NIH budgetary information 1s from
http://www.nih.gov/about/budget.htm.

p_164: The Elsevier revenue and profit figures are based on the 2009 Reed
Elsevier Annual Report [181].

p_164: The American Chemical Society’s revenue and profit figures are from
[131].

p_164: My account of Eric Dezenhall and the publishers’ trade association
(the Association of American Publishers) is based on [70], with additional
background from [100]. The quotes from PRISM are from [176].
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p_165: Simon Singh’s original article in which he criticized the British
Chiropractic Association (BCA) is [199]. The article by Dougans and Green on
the Singh case is at [56]. My discussion also benefited from articles by Ben
Goldacre [74] and Martin Robbins [185]. The BCA’s description of evidence
for the effectiveness of chiropractic treatments is [221]. A similar instance of
wiki litigation in the open source software world involved assertions by a
company called SCO that code it owned had been incorporated into Linux, as a
result of which SCO sued companies such as Novell and IBM. The cases were
covered in remarkable detail at a community website called Groklaw
(http://groklaw.net), started by a paralegal named Pamela Jones.

p_167: Pharyngula is at http://scienceblogs.com/pharyngula/. The figures for
the circulation of the Des Moines Register and the Salt Lake Tribune are from
the Audit Bureau of Circulations [§].

p_170: My account of Easter Island is based on Jared Diamond’s book
Collapse [53]. The reconstruction of Easter Island’s history is difficult and
complex, and the subject of much contention among scholars; unsurprisingly,
some disagree with Diamond’s account.

p_171: On the reduction of life expectancy due to HIV/AIDS in the most
highly affected African countries, see [103].

p_171: On bridging the ingenuity gap, see [133].

Chapter 8. The Challenge of Doing Science in the Open

p_173: My account of Galileo’s work is based upon [238].

p_174: For more on the affair of Galileo and Baldassare Capra, see [17].

p_175: My account of the origins of open sharing of discoveries in science is
based in part on Paul David’s article [49]. David points out that there is nothing
logically inevitable about the emergence of openness in science, and that it was
in large part a result of external forces acting on the scientific community, not
merely forces within science. David’s analysis focuses on the earliest parts of
modern science, and emphasizes how prestige seeking by monarchs and other
patrons was a motivation for open disclosure of results. In my account I’ve also
emphasized the motivation coming from the public benefit derived from open
science. This motivation seems to have acquired more force in later times, as
the power of the monarchs diminished.

p_176: The qwiki is online at http://qwiki.stanford.edu/wiki/Main_Page. In
my description of the qwiki, I state that only a few pages are regularly updated.
In fact, there is a part of the site that receives fairly regular attention: the
“Complexity Zoo,” a resource for computer scientists that describes different
types of computational problem. The Complexity Zoo needs separate
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consideration, however, for it is based on a project that was originally totally
unconnected to the qwiki, and that later merged with the qwiki. As a result, for
the purposes of this discussion, I'm treating the “Complexity Zoo” as a
separate entity. It is, of course, interesting to ask why the Complexity Zoo
succeeded when the rest of the qwiki failed. A full answer to this question is
complex, but in brief, the Complexity Zoo has a much narrower scope than the
qwiki, and because of this narrower scope a single dedicated person (Scott
Aaronson, now of MIT) was able to build it out to the point where it became an
extremely useful and well-known resource in the computer science community.
The combination of its already high profile and its narrow scope has helped
attract a few people to make occasional contributions to its upkeep.

p_176: The term “wiki-science” seems to have been introduced in an essay
by Kevin Kelly [108]. Similar ideas were proposed independently (and, in
some cases, earlier) by many people. An intntere discussion involving some
early contributors to wikis may be found at the Meatball wiki: [137] and [138].

p_178: The job and graduation data for physics are based on the American
Institute of Physics’ “Latest Employment Data for Physicists and Related
Scientists,” available at http:/www.aip.org/statistics/. I picked physics because
reliable data are available. Anecdotal impressions from other fields confirm
that the situation is similar.

p_178 Those science wikis that do succeed are usually in a supporting role
for some more conventional project: a notable exception to this rule is the Gene
Wiki, a successful wiki-based project to annotate genes. Part of what has
helped the Gene Wiki succeed is that it is not an independent wiki, but rather a
subproject of Wikipedia: if you’ve ever looked up a gene on Wikipedia then
chances are that you’ve seen work done as part of the Gene Wiki project. The
Gene Wiki benefits from the many people who already dedicate time to editing
and improving Wikipedia, and from the high visibility Wikipedia pages often
have in search engines.

p_179: For another perspective on user-contributed comment sites for
science, see [148].

p_179: The final report on Nature’s trial of open peer review: [167].

p_180: Although the user-contributed comment sites for science are failing,
scientists aren’t always unwilling to comment online about other scientists’
work. We saw an example along these lines starting on page 259, with science
bloggers investigating the evidence for chiropractic offered by the British
Chiropractic Association in their dispute with Simon Singh. Other examples
include (1) a Polymath-style collaboration [173] in 2010, in which a group of
mathematicians, computer scientists, and physicists worked together online to
analyze a claimed solution to one of the biggest open problems in computer
science; (2) a blog-based online discussion [180] analyzing NASA’s 2010
announcement [242] that they’d discovered lifeforms that incorporate arsenic;
(3) Faculty of 1000 (http://f1000.com/), a site that actively recruits a limited
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number of high-profile researchers to write reviews of biomedical papers; and
(4) MathSciNet (http:/www.ams.org/mathscinet/), a similar site for
mathematics. In each case, the incentives for potential contributors are quite
different than for the user-contributed comment sites I have described. I won’t
analyze the incentives here—the point of this section isn’t to comprehensively
assay scientists’ online commenting habits—but note that in each case a
detailed analysis shows that the incentives for scientists to comment are much
stronger than for the user-contributed comment sites.

p_182 “publish [papers] or perish,” not “publish [data] or perish” is from
[171].

Chapter 9. The Open Science Imperative

—n:

="0em" width="1em" align="justify">p /87 Tobias Osborne’s research blog
on quantum computing is at http://tjoresearchnotes.wordpress.com/. The idea
of open notebook science has been developed in detail by Jean-Claude Bradley
[26] and Cameron Neylon [147]. See also Bradley’s blog
(http://usefulchem.blogspot.com/) and Neylon’s blog
(http://cameronneylon.net/).

p_187 open science “would require most scientists to simultaneously and
completely change their behaviour: [164].

p_188: Details about the Swedish change from driving on the left to driving
on the right may be found in [217] and [97]. The language in my account is
inspired by a wonderful sentence of Stephen Pinker [170], who wrote, “A
switch from driving on the left to driving on the right could not begin with a
daring nonconformist or a grass-roots movement but would have to be imposed
from the top down (which is what happened in Sweden at 5 am, Sunday,
September 3, 1967).”

p_188: In fact, the Journal des S¢avans has a claim to being the world’s first
scientific journal, as it began publication a couple of months before the
Philosophical Transactions of the Royal Society. However, the point is
debatable, as the Journal des S¢avans mixed scientific and nonscientific
content.

p_188: Mary Boas Hall’s comments about Oldenburg begging for
information from the scientists of the day are given in [89] (page 159).

p_191: The policy situation for sharing of genetic data is rapidly evolving.
For a broad overview of policy at the National Institutes of Health, including
the policy on genome-wide association studies, see [143]. For the specific
policy from the National Human Genome Research Institute in support of the
Bermuda Agreement, see [96]. For the Wellcome Trust policy, see [236].

p 191: The UK Medical Research Council’s policy on open data is in [229].
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p 191 a spokesperson said this announcement was merely “phase one” of an
effort to ensure that all data be openly accessible: [140].

p_191: The OECD recommendations on open access to publicly funded
research data are in [160].

p_191: The phrase “the republic of science” is from Michael Polanyi’s
excellent essay [172] of the same title. Among other things, the essay describes
the dangers of too much centralized control in science, exactly the sort of
centralized control that grant agencies have today. (When Polanyi was writing,
the grant agencies had far smaller budgets, anonsequently much less power.) |
agree with Polanyi’s concerns—indeed, it’s tempting to write a follow-up essay
on “The Oligarchy of Science”—but the point of the current discussion is, of
course, to find best actions in the world we find ourselves in, not in some
idealized world.

p_193: On property rights in ideas and the invisible hand in science, see
[172,48]; an interesting general article on invisible hand explanations is [230].
I don’t know where the term “reputation economy” originates; it has been in
wide use since the 1990s (and perhaps earlier), but the idea is much older.

p_194: SPIRES is at http://www.slac.stanford.edu/spires/. The physics
preprint arXiv is, as previously noted, at http://arxiv.org.

p_195: On new ways of measuring science, see, for instance, [175] and
references therein.

p_196: Regarding the development of new tools for the construction of
knowledge, I’ve placed most of the onus on scientists to build these tools. You
might object that developing such tools is the job of academic libraries and
scientific publishers. However, there are many reasons to think that the right
place for such tools to originate is with scientists themselves. Consider, for
example, that nearly all the examples I’ve described in this book — from the
Polymath Project to GenBank to the arXiv — were created by scientists.
Libraries and scientific publishers are not, for the most part, set up to work on
such risky and radical innovations. Instead, they’re oriented toward steady
improvements to existing ways of doing things. While the libraries and
publishers employ many talented people, when those people try to develop
radically new tools they often find themselves battling tremendous institutional
inertia. As a result, the best place for new tools to originate is with scientists
themselves. I believe the appropriate role for libraries and publishers is later, as
partners who can help sustain and further develop the most successful tools.
This is exactly what has happened with projects such as the arXiv and
GenBank, which were started by scientists, but whose growth and further
development came through partnerships with the Cornell University Library
and the US National Library of Medicine, respectively.

p_196: Continuing the theme of the last note, you might also wonder if
developing new software tools might not be a job for a centralized agency. This
has been tried in biology, for example, where many software tools are


http://www.slac.stanford.edu/spires/
http://arxiv.org/

developed at the US’s National Center for Biotechnology Information (NCBI),
itself a part of the US National Library of Medicine. The NCBI is responsible
for running GenBank and has also helped pioneer or support many other
important online biological databases. But while the NCBI provides a valuable
service, it also centralizes innovation, and drives out potential competitors,
who cannot hope to compete with the deep pockets of the NCBI. Over the long
run, | believe that science needs a more decentralized approach to innovation.

196 On the limits to mering science, see [154].

p_198: On expectations about privacy, ethics, safety and legality, those
expectations will, of course, evolve. Sites such as Patients Like Me
(http://patientslikeme.com) ask medical patients to voluntarily share their
medical information, and many patients have done so, in part so that the
information can be used for research purposes.

p_198: The Grothendieck quote is from [85]. See also the discussion in
chapter 18 of [200], where I learned of this quote.

_198: The problem of managing attention in collaboration has been studied
experimentally in [76]. Their results are consistent with the analysis here, and
show that group problem solving may actually become less effective if
everyone communicates with everyone else.

p_200: An account of the Trenberth email, together with a link to the
(apparently genuine) original email, may be found in [44]. Trenberth’s original
paper [225] is quite readable.

p_201: On the management of the Kepler data, see [91, 166]. For the
February 2011 announcement of Earth-size planets, see [129]. Note that in
September 2010 another team independently announced [232] finding an
Earth-like planet, around the star Gliese 581. This discovery has since been
contested [110].

p_201: Dorigo’s announcement that he was hearing rumors that the Higgs
particle had been discovered is in [54], and his retraction is in [55]. Coverage
in the mainstream media includes [47, 41].

p202: A discussion of the history of the classification of the finite simple
groups is given in [201]. The current status of the classification is discussed in
[5].

p_203 How can other scientists verify and reproduce the results from such
experiments?: See, e.g., [205], and references therein.

1.203: On “science beyond individual understanding,” see [155].

1203 Worldwide, our governments spend more than 100 billion dollars each
year on basic research: I’ve based this assertion on chapter 4 of a report from
the US National Science Foundation [144]. According to numbers included in
that report, the US government spends 39 billion dollars each year on basic
research. The report does not directly compute total worldwide governmental
spending on basic research, and so the figure of 100 billion dollars is an
estimate, based on several other numbers from that report.


http://patientslikeme.com/

p__206: The Daniel Hillis quote “there are problems that are
impossible&0;. . .” is from page 157 of Stewart Brand’s book The Clock of the
Long Now [27].

Appendix

p 211: A gentle introduction to the density Hales Jewett (DHJ) theorem,
including on explanation of the concept of combinatorial lines, may be found
in [66].

p_212: For Szemerédi’s theorem, see [218]. The Green-Tao theorem is
proved in [84].

p_212: The original proof of DHJ was in [66].
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